Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem1 Structured version   Visualization version   GIF version

Theorem icccmplem1 22433
 Description: Lemma for icccmp 22436. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
icccmp.3 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
icccmp.4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
icccmp.5 (𝜑𝐴 ∈ ℝ)
icccmp.6 (𝜑𝐵 ∈ ℝ)
icccmp.7 (𝜑𝐴𝐵)
icccmp.8 (𝜑𝑈𝐽)
icccmp.9 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
Assertion
Ref Expression
icccmplem1 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝜑,𝑦   𝑥,𝐴,𝑦,𝑧   𝑥,𝐷   𝑥,𝑇,𝑧   𝑧,𝐽   𝑦,𝑆   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐷(𝑦,𝑧)   𝑆(𝑥,𝑧)   𝑇(𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem icccmplem1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 icccmp.5 . . . . 5 (𝜑𝐴 ∈ ℝ)
21rexrd 9968 . . . 4 (𝜑𝐴 ∈ ℝ*)
3 icccmp.6 . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 9968 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 icccmp.7 . . . 4 (𝜑𝐴𝐵)
6 lbicc2 12159 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
72, 4, 5, 6syl3anc 1318 . . 3 (𝜑𝐴 ∈ (𝐴[,]𝐵))
8 icccmp.9 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
98, 7sseldd 3569 . . . . 5 (𝜑𝐴 𝑈)
10 eluni2 4376 . . . . 5 (𝐴 𝑈 ↔ ∃𝑢𝑈 𝐴𝑢)
119, 10sylib 207 . . . 4 (𝜑 → ∃𝑢𝑈 𝐴𝑢)
12 snssi 4280 . . . . . . . 8 (𝑢𝑈 → {𝑢} ⊆ 𝑈)
1312ad2antrl 760 . . . . . . 7 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ⊆ 𝑈)
14 snex 4835 . . . . . . . 8 {𝑢} ∈ V
1514elpw 4114 . . . . . . 7 ({𝑢} ∈ 𝒫 𝑈 ↔ {𝑢} ⊆ 𝑈)
1613, 15sylibr 223 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ 𝒫 𝑈)
17 snfi 7923 . . . . . . 7 {𝑢} ∈ Fin
1817a1i 11 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ Fin)
1916, 18elind 3760 . . . . 5 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ (𝒫 𝑈 ∩ Fin))
202adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → 𝐴 ∈ ℝ*)
21 iccid 12091 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
2220, 21syl 17 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → (𝐴[,]𝐴) = {𝐴})
23 snssi 4280 . . . . . . 7 (𝐴𝑢 → {𝐴} ⊆ 𝑢)
2423ad2antll 761 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝐴} ⊆ 𝑢)
2522, 24eqsstrd 3602 . . . . 5 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → (𝐴[,]𝐴) ⊆ 𝑢)
26 unieq 4380 . . . . . . . 8 (𝑧 = {𝑢} → 𝑧 = {𝑢})
27 vex 3176 . . . . . . . . 9 𝑢 ∈ V
2827unisn 4387 . . . . . . . 8 {𝑢} = 𝑢
2926, 28syl6eq 2660 . . . . . . 7 (𝑧 = {𝑢} → 𝑧 = 𝑢)
3029sseq2d 3596 . . . . . 6 (𝑧 = {𝑢} → ((𝐴[,]𝐴) ⊆ 𝑧 ↔ (𝐴[,]𝐴) ⊆ 𝑢))
3130rspcev 3282 . . . . 5 (({𝑢} ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝐴) ⊆ 𝑢) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
3219, 25, 31syl2anc 691 . . . 4 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
3311, 32rexlimddv 3017 . . 3 (𝜑 → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
34 oveq2 6557 . . . . . 6 (𝑥 = 𝐴 → (𝐴[,]𝑥) = (𝐴[,]𝐴))
3534sseq1d 3595 . . . . 5 (𝑥 = 𝐴 → ((𝐴[,]𝑥) ⊆ 𝑧 ↔ (𝐴[,]𝐴) ⊆ 𝑧))
3635rexbidv 3034 . . . 4 (𝑥 = 𝐴 → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧))
37 icccmp.4 . . . 4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
3836, 37elrab2 3333 . . 3 (𝐴𝑆 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧))
397, 33, 38sylanbrc 695 . 2 (𝜑𝐴𝑆)
40 ssrab2 3650 . . . . . 6 {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} ⊆ (𝐴[,]𝐵)
4137, 40eqsstri 3598 . . . . 5 𝑆 ⊆ (𝐴[,]𝐵)
4241sseli 3564 . . . 4 (𝑦𝑆𝑦 ∈ (𝐴[,]𝐵))
43 elicc2 12109 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
441, 3, 43syl2anc 691 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
4544biimpa 500 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4645simp3d 1068 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
4742, 46sylan2 490 . . 3 ((𝜑𝑦𝑆) → 𝑦𝐵)
4847ralrimiva 2949 . 2 (𝜑 → ∀𝑦𝑆 𝑦𝐵)
4939, 48jca 553 1 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  {crab 2900   ∩ cin 3539   ⊆ wss 3540  𝒫 cpw 4108  {csn 4125  ∪ cuni 4372   class class class wbr 4583   × cxp 5036  ran crn 5039   ↾ cres 5040   ∘ ccom 5042  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℝcr 9814  ℝ*cxr 9952   ≤ cle 9954   − cmin 10145  (,)cioo 12046  [,]cicc 12049  abscabs 13822   ↾t crest 15904  topGenctg 15921 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-icc 12053 This theorem is referenced by:  icccmplem2  22434  icccmplem3  22435
 Copyright terms: Public domain W3C validator