Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspdmvle Structured version   Visualization version   GIF version

Theorem hoidifhspdmvle 39510
 Description: The dimensional volume of the difference of a half-open interval and a half-space is less than or equal to the dimensional volume of the whole half-open interval. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspdmvle.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidifhspdmvle.x (𝜑𝑋 ∈ Fin)
hoidifhspdmvle.a (𝜑𝐴:𝑋⟶ℝ)
hoidifhspdmvle.b (𝜑𝐵:𝑋⟶ℝ)
hoidifhspdmvle.k (𝜑𝐾𝑋)
hoidifhspdmvle.d 𝐷 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
hoidifhspdmvle.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hoidifhspdmvle (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐴,𝑐,,𝑘   𝐵,𝑎,𝑏,𝑘   𝐷,𝑎,𝑏,𝑘   𝐾,𝑐,,𝑥   𝑋,𝑎,𝑏,𝑘,𝑥   𝑋,𝑐,   𝑌,𝑎,𝑏,𝑘,𝑥   𝑌,𝑐,   𝜑,𝑎,𝑏,𝑘,𝑥   𝜑,𝑐,
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,,𝑐)   𝐷(𝑥,,𝑐)   𝐾(𝑘,𝑎,𝑏)   𝐿(𝑥,,𝑘,𝑎,𝑏,𝑐)

Proof of Theorem hoidifhspdmvle
StepHypRef Expression
1 nfv 1830 . . 3 𝑘𝜑
2 hoidifhspdmvle.x . . 3 (𝜑𝑋 ∈ Fin)
3 hoidifhspdmvle.d . . . . . 6 𝐷 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
4 hoidifhspdmvle.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
5 hoidifhspdmvle.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
63, 4, 2, 5hoidifhspf 39508 . . . . 5 (𝜑 → ((𝐷𝑌)‘𝐴):𝑋⟶ℝ)
76ffvelrnda 6267 . . . 4 ((𝜑𝑘𝑋) → (((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ)
8 hoidifhspdmvle.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
98ffvelrnda 6267 . . . 4 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
10 volicore 39471 . . . 4 (((((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ∈ ℝ)
117, 9, 10syl2anc 691 . . 3 ((𝜑𝑘𝑋) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ∈ ℝ)
129rexrd 9968 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
13 icombl 23139 . . . . 5 (((((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol)
147, 12, 13syl2anc 691 . . . 4 ((𝜑𝑘𝑋) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol)
15 volge0 38853 . . . 4 (((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol → 0 ≤ (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
1614, 15syl 17 . . 3 ((𝜑𝑘𝑋) → 0 ≤ (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
175ffvelrnda 6267 . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
18 volicore 39471 . . . 4 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
1917, 9, 18syl2anc 691 . . 3 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
20 icombl 23139 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
2117, 12, 20syl2anc 691 . . . 4 ((𝜑𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
2217rexrd 9968 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
234adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝑌 ∈ ℝ)
2423adantr 480 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ∈ ℝ)
2517adantr 480 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ∈ ℝ)
26 max2 11892 . . . . . . . 8 ((𝑌 ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ) → (𝐴𝑘) ≤ if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
2724, 25, 26syl2anc 691 . . . . . . 7 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ≤ if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
282adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑋 ∈ Fin)
295adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴:𝑋⟶ℝ)
30 simpr 476 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑘𝑋)
313, 23, 28, 29, 30hoidifhspval3 39509 . . . . . . . . 9 ((𝜑𝑘𝑋) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
3231adantr 480 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
33 iftrue 4042 . . . . . . . . 9 (𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
3433adantl 481 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
3532, 34eqtr2d 2645 . . . . . . 7 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌) = (((𝐷𝑌)‘𝐴)‘𝑘))
3627, 35breqtrd 4609 . . . . . 6 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
3717leidd 10473 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
3837adantr 480 . . . . . . 7 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (𝐴𝑘))
3931adantr 480 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
40 iffalse 4045 . . . . . . . . 9 𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = (𝐴𝑘))
4140adantl 481 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = (𝐴𝑘))
4239, 41eqtr2d 2645 . . . . . . 7 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) = (((𝐷𝑌)‘𝐴)‘𝑘))
4338, 42breqtrd 4609 . . . . . 6 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
4436, 43pm2.61dan 828 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
459leidd 10473 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ≤ (𝐵𝑘))
46 icossico 12114 . . . . 5 ((((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
4722, 12, 44, 45, 46syl22anc 1319 . . . 4 ((𝜑𝑘𝑋) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
48 volss 23108 . . . 4 ((((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol ∧ ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol ∧ ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘))) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
4914, 21, 47, 48syl3anc 1318 . . 3 ((𝜑𝑘𝑋) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
501, 2, 11, 16, 19, 49fprodle 14566 . 2 (𝜑 → ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
51 hoidifhspdmvle.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
52 hoidifhspdmvle.k . . . . 5 (𝜑𝐾𝑋)
53 ne0i 3880 . . . . 5 (𝐾𝑋𝑋 ≠ ∅)
5452, 53syl 17 . . . 4 (𝜑𝑋 ≠ ∅)
5551, 2, 54, 6, 8hoidmvn0val 39474 . . 3 (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
5651, 2, 54, 5, 8hoidmvn0val 39474 . . 3 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
5755, 56breq12d 4596 . 2 (𝜑 → ((((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵) ↔ ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
5850, 57mpbird 246 1 (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ⊆ wss 3540  ∅c0 3874  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551   ↑𝑚 cmap 7744  Fincfn 7841  ℝcr 9814  0cc0 9815  ℝ*cxr 9952   ≤ cle 9954  [,)cico 12048  ∏cprod 14474  volcvol 23039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-prod 14475  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041 This theorem is referenced by:  hspmbllem2  39517
 Copyright terms: Public domain W3C validator