Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhshsslem2 Structured version   Visualization version   GIF version

Theorem hhshsslem2 27509
 Description: Lemma for hhsssh 27510. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssp3.3 𝑊 ∈ (SubSp‘𝑈)
hhssp3.4 𝐻 ⊆ ℋ
Assertion
Ref Expression
hhshsslem2 𝐻S

Proof of Theorem hhshsslem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hhssp3.4 . . 3 𝐻 ⊆ ℋ
2 hhsst.1 . . . . . 6 𝑈 = ⟨⟨ + , · ⟩, norm
32hhnv 27406 . . . . 5 𝑈 ∈ NrmCVec
4 hhssp3.3 . . . . 5 𝑊 ∈ (SubSp‘𝑈)
52hh0v 27409 . . . . . 6 0 = (0vec𝑈)
6 eqid 2610 . . . . . 6 (0vec𝑊) = (0vec𝑊)
7 eqid 2610 . . . . . 6 (SubSp‘𝑈) = (SubSp‘𝑈)
85, 6, 7sspz 26974 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (0vec𝑊) = 0)
93, 4, 8mp2an 704 . . . 4 (0vec𝑊) = 0
107sspnv 26965 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec)
113, 4, 10mp2an 704 . . . . . 6 𝑊 ∈ NrmCVec
12 eqid 2610 . . . . . . 7 (BaseSet‘𝑊) = (BaseSet‘𝑊)
1312, 6nvzcl 26873 . . . . . 6 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
1411, 13ax-mp 5 . . . . 5 (0vec𝑊) ∈ (BaseSet‘𝑊)
15 hhsst.2 . . . . . 6 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
162, 15, 4, 1hhshsslem1 27508 . . . . 5 𝐻 = (BaseSet‘𝑊)
1714, 16eleqtrri 2687 . . . 4 (0vec𝑊) ∈ 𝐻
189, 17eqeltrri 2685 . . 3 0𝐻
191, 18pm3.2i 470 . 2 (𝐻 ⊆ ℋ ∧ 0𝐻)
202hhva 27407 . . . . . . 7 + = ( +𝑣𝑈)
21 eqid 2610 . . . . . . 7 ( +𝑣𝑊) = ( +𝑣𝑊)
2216, 20, 21, 7sspgval 26968 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥( +𝑣𝑊)𝑦) = (𝑥 + 𝑦))
233, 4, 22mpanl12 714 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( +𝑣𝑊)𝑦) = (𝑥 + 𝑦))
2416, 21nvgcl 26859 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑥𝐻𝑦𝐻) → (𝑥( +𝑣𝑊)𝑦) ∈ 𝐻)
2511, 24mp3an1 1403 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( +𝑣𝑊)𝑦) ∈ 𝐻)
2623, 25eqeltrrd 2689 . . . 4 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
2726rgen2a 2960 . . 3 𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻
282hhsm 27410 . . . . . . 7 · = ( ·𝑠OLD𝑈)
29 eqid 2610 . . . . . . 7 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
3016, 28, 29, 7sspsval 26970 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ ℂ ∧ 𝑦𝐻)) → (𝑥( ·𝑠OLD𝑊)𝑦) = (𝑥 · 𝑦))
313, 4, 30mpanl12 714 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( ·𝑠OLD𝑊)𝑦) = (𝑥 · 𝑦))
3216, 29nvscl 26865 . . . . . 6 ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( ·𝑠OLD𝑊)𝑦) ∈ 𝐻)
3311, 32mp3an1 1403 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( ·𝑠OLD𝑊)𝑦) ∈ 𝐻)
3431, 33eqeltrrd 2689 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
3534rgen2 2958 . . 3 𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻
3627, 35pm3.2i 470 . 2 (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)
37 issh2 27450 . 2 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
3819, 36, 37mpbir2an 957 1 𝐻S
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ⊆ wss 3540  ⟨cop 4131   × cxp 5036   ↾ cres 5040  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  0veccn0v 26827  SubSpcss 26960   ℋchil 27160   +ℎ cva 27161   ·ℎ csm 27162  normℎcno 27164  0ℎc0v 27165   Sℋ csh 27169 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ssp 26961  df-hnorm 27209  df-hvsub 27212  df-sh 27448 This theorem is referenced by:  hhsssh  27510
 Copyright terms: Public domain W3C validator