Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashnzfz | Structured version Visualization version GIF version |
Description: Special case of hashdvds 15318: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
hashnzfz.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
hashnzfz.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
hashnzfz.k | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(𝐽 − 1))) |
Ref | Expression |
---|---|
hashnzfz | ⊢ (𝜑 → (#‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashnzfz.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
2 | hashnzfz.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
3 | hashnzfz.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(𝐽 − 1))) | |
4 | 0zd 11266 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
5 | 1, 2, 3, 4 | hashdvds 15318 | . 2 ⊢ (𝜑 → (#‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁)))) |
6 | elfzelz 12213 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℤ) | |
7 | 6 | zcnd 11359 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℂ) |
8 | 7 | subid1d 10260 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽...𝐾) → (𝑥 − 0) = 𝑥) |
9 | 8 | breq2d 4595 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽...𝐾) → (𝑁 ∥ (𝑥 − 0) ↔ 𝑁 ∥ 𝑥)) |
10 | 9 | rabbiia 3161 | . . . . 5 ⊢ {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ 𝑥} |
11 | dfrab3 3861 | . . . . 5 ⊢ {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ 𝑥} = ((𝐽...𝐾) ∩ {𝑥 ∣ 𝑁 ∥ 𝑥}) | |
12 | reldvds 37536 | . . . . . . . 8 ⊢ Rel ∥ | |
13 | relimasn 5407 | . . . . . . . 8 ⊢ (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥}) | |
14 | 12, 13 | ax-mp 5 | . . . . . . 7 ⊢ ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥} |
15 | 14 | ineq2i 3773 | . . . . . 6 ⊢ ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = ((𝐽...𝐾) ∩ {𝑥 ∣ 𝑁 ∥ 𝑥}) |
16 | incom 3767 | . . . . . 6 ⊢ ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾)) | |
17 | 15, 16 | eqtr3i 2634 | . . . . 5 ⊢ ((𝐽...𝐾) ∩ {𝑥 ∣ 𝑁 ∥ 𝑥}) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾)) |
18 | 10, 11, 17 | 3eqtri 2636 | . . . 4 ⊢ {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾)) |
19 | 18 | fveq2i 6106 | . . 3 ⊢ (#‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (#‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) |
20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (#‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (#‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾)))) |
21 | eluzelz 11573 | . . . . . . . 8 ⊢ (𝐾 ∈ (ℤ≥‘(𝐽 − 1)) → 𝐾 ∈ ℤ) | |
22 | 3, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
23 | 22 | zcnd 11359 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
24 | 23 | subid1d 10260 | . . . . 5 ⊢ (𝜑 → (𝐾 − 0) = 𝐾) |
25 | 24 | oveq1d 6564 | . . . 4 ⊢ (𝜑 → ((𝐾 − 0) / 𝑁) = (𝐾 / 𝑁)) |
26 | 25 | fveq2d 6107 | . . 3 ⊢ (𝜑 → (⌊‘((𝐾 − 0) / 𝑁)) = (⌊‘(𝐾 / 𝑁))) |
27 | peano2zm 11297 | . . . . . . . 8 ⊢ (𝐽 ∈ ℤ → (𝐽 − 1) ∈ ℤ) | |
28 | 2, 27 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐽 − 1) ∈ ℤ) |
29 | 28 | zcnd 11359 | . . . . . 6 ⊢ (𝜑 → (𝐽 − 1) ∈ ℂ) |
30 | 29 | subid1d 10260 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 1) − 0) = (𝐽 − 1)) |
31 | 30 | oveq1d 6564 | . . . 4 ⊢ (𝜑 → (((𝐽 − 1) − 0) / 𝑁) = ((𝐽 − 1) / 𝑁)) |
32 | 31 | fveq2d 6107 | . . 3 ⊢ (𝜑 → (⌊‘(((𝐽 − 1) − 0) / 𝑁)) = (⌊‘((𝐽 − 1) / 𝑁))) |
33 | 26, 32 | oveq12d 6567 | . 2 ⊢ (𝜑 → ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) |
34 | 5, 20, 33 | 3eqtr3d 2652 | 1 ⊢ (𝜑 → (#‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 {cab 2596 {crab 2900 ∩ cin 3539 {csn 4125 class class class wbr 4583 “ cima 5041 Rel wrel 5043 ‘cfv 5804 (class class class)co 6549 0cc0 9815 1c1 9816 − cmin 10145 / cdiv 10563 ℕcn 10897 ℤcz 11254 ℤ≥cuz 11563 ...cfz 12197 ⌊cfl 12453 #chash 12979 ∥ cdvds 14821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fl 12455 df-hash 12980 df-dvds 14822 |
This theorem is referenced by: hashnzfz2 37542 hashnzfzclim 37543 |
Copyright terms: Public domain | W3C validator |