MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumress Structured version   Visualization version   GIF version

Theorem gsumress 17099
Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither 𝐺 nor 𝐻 need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
gsumress.b 𝐵 = (Base‘𝐺)
gsumress.o + = (+g𝐺)
gsumress.h 𝐻 = (𝐺s 𝑆)
gsumress.g (𝜑𝐺𝑉)
gsumress.a (𝜑𝐴𝑋)
gsumress.s (𝜑𝑆𝐵)
gsumress.f (𝜑𝐹:𝐴𝑆)
gsumress.z (𝜑0𝑆)
gsumress.c ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
Assertion
Ref Expression
gsumress (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝐻   𝑥, +   𝑥, 0
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem gsumress
Dummy variables 𝑓 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumress.s . . . . . . . . 9 (𝜑𝑆𝐵)
2 gsumress.z . . . . . . . . 9 (𝜑0𝑆)
31, 2sseldd 3569 . . . . . . . 8 (𝜑0𝐵)
4 gsumress.c . . . . . . . . 9 ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
54ralrimiva 2949 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
6 oveq1 6556 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑦 + 𝑥) = ( 0 + 𝑥))
76eqeq1d 2612 . . . . . . . . . . 11 (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ ( 0 + 𝑥) = 𝑥))
8 oveq2 6557 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑥 + 𝑦) = (𝑥 + 0 ))
98eqeq1d 2612 . . . . . . . . . . 11 (𝑦 = 0 → ((𝑥 + 𝑦) = 𝑥 ↔ (𝑥 + 0 ) = 𝑥))
107, 9anbi12d 743 . . . . . . . . . 10 (𝑦 = 0 → (((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
1110ralbidv 2969 . . . . . . . . 9 (𝑦 = 0 → (∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
1211elrab 3331 . . . . . . . 8 ( 0 ∈ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ↔ ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
133, 5, 12sylanbrc 695 . . . . . . 7 (𝜑0 ∈ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
1413snssd 4281 . . . . . 6 (𝜑 → { 0 } ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
15 gsumress.g . . . . . . . 8 (𝜑𝐺𝑉)
16 gsumress.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
17 eqid 2610 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
18 gsumress.o . . . . . . . . 9 + = (+g𝐺)
19 eqid 2610 . . . . . . . . 9 {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}
2016, 17, 18, 19mgmidsssn0 17092 . . . . . . . 8 (𝐺𝑉 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g𝐺)})
2115, 20syl 17 . . . . . . 7 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g𝐺)})
2221, 13sseldd 3569 . . . . . . . . 9 (𝜑0 ∈ {(0g𝐺)})
23 elsni 4142 . . . . . . . . 9 ( 0 ∈ {(0g𝐺)} → 0 = (0g𝐺))
2422, 23syl 17 . . . . . . . 8 (𝜑0 = (0g𝐺))
2524sneqd 4137 . . . . . . 7 (𝜑 → { 0 } = {(0g𝐺)})
2621, 25sseqtr4d 3605 . . . . . 6 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ { 0 })
2714, 26eqssd 3585 . . . . 5 (𝜑 → { 0 } = {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
281sselda 3568 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥𝐵)
2928, 4syldan 486 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
3029ralrimiva 2949 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
3110ralbidv 2969 . . . . . . . . . 10 (𝑦 = 0 → (∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
3231elrab 3331 . . . . . . . . 9 ( 0 ∈ {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ↔ ( 0𝑆 ∧ ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
332, 30, 32sylanbrc 695 . . . . . . . 8 (𝜑0 ∈ {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
34 gsumress.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑆)
3534, 16ressbas2 15758 . . . . . . . . . 10 (𝑆𝐵𝑆 = (Base‘𝐻))
361, 35syl 17 . . . . . . . . 9 (𝜑𝑆 = (Base‘𝐻))
37 fvex 6113 . . . . . . . . . . . . . . 15 (Base‘𝐻) ∈ V
3836, 37syl6eqel 2696 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
3934, 18ressplusg 15818 . . . . . . . . . . . . . 14 (𝑆 ∈ V → + = (+g𝐻))
4038, 39syl 17 . . . . . . . . . . . . 13 (𝜑+ = (+g𝐻))
4140oveqd 6566 . . . . . . . . . . . 12 (𝜑 → (𝑦 + 𝑥) = (𝑦(+g𝐻)𝑥))
4241eqeq1d 2612 . . . . . . . . . . 11 (𝜑 → ((𝑦 + 𝑥) = 𝑥 ↔ (𝑦(+g𝐻)𝑥) = 𝑥))
4340oveqd 6566 . . . . . . . . . . . 12 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
4443eqeq1d 2612 . . . . . . . . . . 11 (𝜑 → ((𝑥 + 𝑦) = 𝑥 ↔ (𝑥(+g𝐻)𝑦) = 𝑥))
4542, 44anbi12d 743 . . . . . . . . . 10 (𝜑 → (((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)))
4636, 45raleqbidv 3129 . . . . . . . . 9 (𝜑 → (∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)))
4736, 46rabeqbidv 3168 . . . . . . . 8 (𝜑 → {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
4833, 47eleqtrd 2690 . . . . . . 7 (𝜑0 ∈ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
4948snssd 4281 . . . . . 6 (𝜑 → { 0 } ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
50 ovex 6577 . . . . . . . . . 10 (𝐺s 𝑆) ∈ V
5134, 50eqeltri 2684 . . . . . . . . 9 𝐻 ∈ V
5251a1i 11 . . . . . . . 8 (𝜑𝐻 ∈ V)
53 eqid 2610 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
54 eqid 2610 . . . . . . . . 9 (0g𝐻) = (0g𝐻)
55 eqid 2610 . . . . . . . . 9 (+g𝐻) = (+g𝐻)
56 eqid 2610 . . . . . . . . 9 {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}
5753, 54, 55, 56mgmidsssn0 17092 . . . . . . . 8 (𝐻 ∈ V → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ {(0g𝐻)})
5852, 57syl 17 . . . . . . 7 (𝜑 → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ {(0g𝐻)})
5958, 48sseldd 3569 . . . . . . . . 9 (𝜑0 ∈ {(0g𝐻)})
60 elsni 4142 . . . . . . . . 9 ( 0 ∈ {(0g𝐻)} → 0 = (0g𝐻))
6159, 60syl 17 . . . . . . . 8 (𝜑0 = (0g𝐻))
6261sneqd 4137 . . . . . . 7 (𝜑 → { 0 } = {(0g𝐻)})
6358, 62sseqtr4d 3605 . . . . . 6 (𝜑 → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ { 0 })
6449, 63eqssd 3585 . . . . 5 (𝜑 → { 0 } = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
6527, 64eqtr3d 2646 . . . 4 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
6665sseq2d 3596 . . 3 (𝜑 → (ran 𝐹 ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ↔ ran 𝐹 ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}))
6724, 61eqtr3d 2646 . . 3 (𝜑 → (0g𝐺) = (0g𝐻))
6840seqeq2d 12670 . . . . . . . . . 10 (𝜑 → seq𝑚( + , 𝐹) = seq𝑚((+g𝐻), 𝐹))
6968fveq1d 6105 . . . . . . . . 9 (𝜑 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
7069eqeq2d 2620 . . . . . . . 8 (𝜑 → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
7170anbi2d 736 . . . . . . 7 (𝜑 → ((𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
7271rexbidv 3034 . . . . . 6 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
7372exbidv 1837 . . . . 5 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
7473iotabidv 5789 . . . 4 (𝜑 → (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) = (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
7540seqeq2d 12670 . . . . . . . . 9 (𝜑 → seq1( + , (𝐹𝑓)) = seq1((+g𝐻), (𝐹𝑓)))
7675fveq1d 6105 . . . . . . . 8 (𝜑 → (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))) = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))
7776eqeq2d 2620 . . . . . . 7 (𝜑 → (𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))) ↔ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))))
7877anbi2d 736 . . . . . 6 (𝜑 → ((𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))) ↔ (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))
7978exbidv 1837 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))) ↔ ∃𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))
8079iotabidv 5789 . . . 4 (𝜑 → (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))) = (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))
8174, 80ifeq12d 4056 . . 3 (𝜑 → if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))))) = if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))))))
8266, 67, 81ifbieq12d 4063 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}, (0g𝐺), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))) = if(ran 𝐹 ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}, (0g𝐻), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))))
8327difeq2d 3690 . . . 4 (𝜑 → (V ∖ { 0 }) = (V ∖ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}))
8483imaeq2d 5385 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 “ (V ∖ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})))
85 gsumress.a . . 3 (𝜑𝐴𝑋)
86 gsumress.f . . . 4 (𝜑𝐹:𝐴𝑆)
8786, 1fssd 5970 . . 3 (𝜑𝐹:𝐴𝐵)
8816, 17, 18, 19, 84, 15, 85, 87gsumval 17094 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}, (0g𝐺), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))))
8964difeq2d 3690 . . . 4 (𝜑 → (V ∖ { 0 }) = (V ∖ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}))
9089imaeq2d 5385 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 “ (V ∖ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})))
9136feq3d 5945 . . . 4 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘𝐻)))
9286, 91mpbid 221 . . 3 (𝜑𝐹:𝐴⟶(Base‘𝐻))
9353, 54, 55, 56, 90, 52, 85, 92gsumval 17094 . 2 (𝜑 → (𝐻 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}, (0g𝐻), if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) ∧ 𝑧 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))))))
9482, 88, 933eqtr4d 2654 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  ifcif 4036  {csn 4125  ccnv 5037  ran crn 5039  cima 5041  ccom 5042  cio 5766  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  1c1 9816  cuz 11563  ...cfz 12197  seqcseq 12663  #chash 12979  Basecbs 15695  s cress 15696  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-seq 12664  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926
This theorem is referenced by:  gsumsubm  17196  regsumfsum  19633  regsumsupp  19787  frlmgsum  19930  imasdsf1olem  21988  esumpfinvallem  29463  sge0tsms  39273  aacllem  42356
  Copyright terms: Public domain W3C validator