MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumress Structured version   Unicode version

Theorem gsumress 16102
Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither  G nor 
H need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
gsumress.b  |-  B  =  ( Base `  G
)
gsumress.o  |-  .+  =  ( +g  `  G )
gsumress.h  |-  H  =  ( Gs  S )
gsumress.g  |-  ( ph  ->  G  e.  V )
gsumress.a  |-  ( ph  ->  A  e.  X )
gsumress.s  |-  ( ph  ->  S  C_  B )
gsumress.f  |-  ( ph  ->  F : A --> S )
gsumress.z  |-  ( ph  ->  .0.  e.  S )
gsumress.c  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
Assertion
Ref Expression
gsumress  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Distinct variable groups:    x, B    x, G    ph, x    x, S    x, H    x,  .+    x,  .0.
Allowed substitution hints:    A( x)    F( x)    V( x)    X( x)

Proof of Theorem gsumress
Dummy variables  f  m  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumress.s . . . . . . . . 9  |-  ( ph  ->  S  C_  B )
2 gsumress.z . . . . . . . . 9  |-  ( ph  ->  .0.  e.  S )
31, 2sseldd 3490 . . . . . . . 8  |-  ( ph  ->  .0.  e.  B )
4 gsumress.c . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
54ralrimiva 2868 . . . . . . . 8  |-  ( ph  ->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
6 oveq1 6277 . . . . . . . . . . . 12  |-  ( y  =  .0.  ->  (
y  .+  x )  =  (  .0.  .+  x
) )
76eqeq1d 2456 . . . . . . . . . . 11  |-  ( y  =  .0.  ->  (
( y  .+  x
)  =  x  <->  (  .0.  .+  x )  =  x ) )
8 oveq2 6278 . . . . . . . . . . . 12  |-  ( y  =  .0.  ->  (
x  .+  y )  =  ( x  .+  .0.  ) )
98eqeq1d 2456 . . . . . . . . . . 11  |-  ( y  =  .0.  ->  (
( x  .+  y
)  =  x  <->  ( x  .+  .0.  )  =  x ) )
107, 9anbi12d 708 . . . . . . . . . 10  |-  ( y  =  .0.  ->  (
( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x )  <->  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
1110ralbidv 2893 . . . . . . . . 9  |-  ( y  =  .0.  ->  ( A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x )  <->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
1211elrab 3254 . . . . . . . 8  |-  (  .0. 
e.  { y  e.  B  |  A. x  e.  B  ( (
y  .+  x )  =  x  /\  (
x  .+  y )  =  x ) }  <->  (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x 
.+  .0.  )  =  x ) ) )
133, 5, 12sylanbrc 662 . . . . . . 7  |-  ( ph  ->  .0.  e.  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } )
1413snssd 4161 . . . . . 6  |-  ( ph  ->  {  .0.  }  C_  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) } )
15 gsumress.g . . . . . . . 8  |-  ( ph  ->  G  e.  V )
16 gsumress.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
17 eqid 2454 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
18 gsumress.o . . . . . . . . 9  |-  .+  =  ( +g  `  G )
19 eqid 2454 . . . . . . . . 9  |-  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) }  =  { y  e.  B  |  A. x  e.  B  ( (
y  .+  x )  =  x  /\  (
x  .+  y )  =  x ) }
2016, 17, 18, 19mgmidsssn0 16095 . . . . . . . 8  |-  ( G  e.  V  ->  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } 
C_  { ( 0g
`  G ) } )
2115, 20syl 16 . . . . . . 7  |-  ( ph  ->  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  C_  { ( 0g `  G ) } )
2221, 13sseldd 3490 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  { ( 0g `  G ) } )
23 elsni 4041 . . . . . . . . 9  |-  (  .0. 
e.  { ( 0g
`  G ) }  ->  .0.  =  ( 0g `  G ) )
2422, 23syl 16 . . . . . . . 8  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
2524sneqd 4028 . . . . . . 7  |-  ( ph  ->  {  .0.  }  =  { ( 0g `  G ) } )
2621, 25sseqtr4d 3526 . . . . . 6  |-  ( ph  ->  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  C_  {  .0.  } )
2714, 26eqssd 3506 . . . . 5  |-  ( ph  ->  {  .0.  }  =  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) } )
281sselda 3489 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  B )
2928, 4syldan 468 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  (
(  .0.  .+  x
)  =  x  /\  ( x  .+  .0.  )  =  x ) )
3029ralrimiva 2868 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
3110ralbidv 2893 . . . . . . . . . 10  |-  ( y  =  .0.  ->  ( A. x  e.  S  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x )  <->  A. x  e.  S  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
3231elrab 3254 . . . . . . . . 9  |-  (  .0. 
e.  { y  e.  S  |  A. x  e.  S  ( (
y  .+  x )  =  x  /\  (
x  .+  y )  =  x ) }  <->  (  .0.  e.  S  /\  A. x  e.  S  ( (  .0.  .+  x )  =  x  /\  ( x 
.+  .0.  )  =  x ) ) )
332, 30, 32sylanbrc 662 . . . . . . . 8  |-  ( ph  ->  .0.  e.  { y  e.  S  |  A. x  e.  S  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } )
34 gsumress.h . . . . . . . . . . 11  |-  H  =  ( Gs  S )
3534, 16ressbas2 14774 . . . . . . . . . 10  |-  ( S 
C_  B  ->  S  =  ( Base `  H
) )
361, 35syl 16 . . . . . . . . 9  |-  ( ph  ->  S  =  ( Base `  H ) )
37 fvex 5858 . . . . . . . . . . . . . . 15  |-  ( Base `  H )  e.  _V
3836, 37syl6eqel 2550 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  e.  _V )
3934, 18ressplusg 14830 . . . . . . . . . . . . . 14  |-  ( S  e.  _V  ->  .+  =  ( +g  `  H ) )
4038, 39syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  .+  =  ( +g  `  H ) )
4140oveqd 6287 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  .+  x
)  =  ( y ( +g  `  H
) x ) )
4241eqeq1d 2456 . . . . . . . . . . 11  |-  ( ph  ->  ( ( y  .+  x )  =  x  <-> 
( y ( +g  `  H ) x )  =  x ) )
4340oveqd 6287 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  .+  y
)  =  ( x ( +g  `  H
) y ) )
4443eqeq1d 2456 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  .+  y )  =  x  <-> 
( x ( +g  `  H ) y )  =  x ) )
4542, 44anbi12d 708 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( y 
.+  x )  =  x  /\  ( x 
.+  y )  =  x )  <->  ( (
y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) ) )
4636, 45raleqbidv 3065 . . . . . . . . 9  |-  ( ph  ->  ( A. x  e.  S  ( ( y 
.+  x )  =  x  /\  ( x 
.+  y )  =  x )  <->  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) ) )
4736, 46rabeqbidv 3101 . . . . . . . 8  |-  ( ph  ->  { y  e.  S  |  A. x  e.  S  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  =  {
y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
4833, 47eleqtrd 2544 . . . . . . 7  |-  ( ph  ->  .0.  e.  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
4948snssd 4161 . . . . . 6  |-  ( ph  ->  {  .0.  }  C_  { y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
50 ovex 6298 . . . . . . . . . 10  |-  ( Gs  S )  e.  _V
5134, 50eqeltri 2538 . . . . . . . . 9  |-  H  e. 
_V
5251a1i 11 . . . . . . . 8  |-  ( ph  ->  H  e.  _V )
53 eqid 2454 . . . . . . . . 9  |-  ( Base `  H )  =  (
Base `  H )
54 eqid 2454 . . . . . . . . 9  |-  ( 0g
`  H )  =  ( 0g `  H
)
55 eqid 2454 . . . . . . . . 9  |-  ( +g  `  H )  =  ( +g  `  H )
56 eqid 2454 . . . . . . . . 9  |-  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) }  =  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) }
5753, 54, 55, 56mgmidsssn0 16095 . . . . . . . 8  |-  ( H  e.  _V  ->  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) }  C_  { ( 0g `  H
) } )
5852, 57syl 16 . . . . . . 7  |-  ( ph  ->  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) }  C_  { ( 0g `  H ) } )
5958, 48sseldd 3490 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  { ( 0g `  H ) } )
60 elsni 4041 . . . . . . . . 9  |-  (  .0. 
e.  { ( 0g
`  H ) }  ->  .0.  =  ( 0g `  H ) )
6159, 60syl 16 . . . . . . . 8  |-  ( ph  ->  .0.  =  ( 0g
`  H ) )
6261sneqd 4028 . . . . . . 7  |-  ( ph  ->  {  .0.  }  =  { ( 0g `  H ) } )
6358, 62sseqtr4d 3526 . . . . . 6  |-  ( ph  ->  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) }  C_  {  .0.  } )
6449, 63eqssd 3506 . . . . 5  |-  ( ph  ->  {  .0.  }  =  { y  e.  (
Base `  H )  |  A. x  e.  (
Base `  H )
( ( y ( +g  `  H ) x )  =  x  /\  ( x ( +g  `  H ) y )  =  x ) } )
6527, 64eqtr3d 2497 . . . 4  |-  ( ph  ->  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  =  {
y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } )
6665sseq2d 3517 . . 3  |-  ( ph  ->  ( ran  F  C_  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) }  <->  ran  F  C_  { y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } ) )
6724, 61eqtr3d 2497 . . 3  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
6840seqeq2d 12096 . . . . . . . . . 10  |-  ( ph  ->  seq m (  .+  ,  F )  =  seq m ( ( +g  `  H ) ,  F
) )
6968fveq1d 5850 . . . . . . . . 9  |-  ( ph  ->  (  seq m ( 
.+  ,  F ) `
 n )  =  (  seq m ( ( +g  `  H
) ,  F ) `
 n ) )
7069eqeq2d 2468 . . . . . . . 8  |-  ( ph  ->  ( z  =  (  seq m (  .+  ,  F ) `  n
)  <->  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) )
7170anbi2d 701 . . . . . . 7  |-  ( ph  ->  ( ( A  =  ( m ... n
)  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  <->  ( A  =  ( m ... n )  /\  z  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) ) )
7271rexbidv 2965 . . . . . 6  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) )  <->  E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
7372exbidv 1719 . . . . 5  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
7473iotabidv 5555 . . . 4  |-  ( ph  ->  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) )  =  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
7540seqeq2d 12096 . . . . . . . . 9  |-  ( ph  ->  seq 1 (  .+  ,  ( F  o.  f ) )  =  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) )
7675fveq1d 5850 . . . . . . . 8  |-  ( ph  ->  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  =  (  seq 1
( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
7776eqeq2d 2468 . . . . . . 7  |-  ( ph  ->  ( z  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  <-> 
z  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) ) )
7877anbi2d 701 . . . . . 6  |-  ( ph  ->  ( ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  <->  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  /\  z  =  (  seq 1
( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) ) ) )
7978exbidv 1719 . . . . 5  |-  ( ph  ->  ( E. f ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  /\  z  =  (  seq 1
(  .+  ,  ( F  o.  f )
) `  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )  <->  E. f ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  /\  z  =  (  seq 1
( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) ) ) )
8079iotabidv 5555 . . . 4  |-  ( ph  ->  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) ) )  =  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) ) ) )
8174, 80ifeq12d 3949 . . 3  |-  ( ph  ->  if ( A  e. 
ran  ... ,  ( iota z E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m
(  .+  ,  F
) `  n )
) ) ,  ( iota z E. f
( f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) ) ) )  =  if ( A  e.  ran  ... , 
( iota z E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F
) `  n )
) ) ,  ( iota z E. f
( f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) ) ) ) )
8266, 67, 81ifbieq12d 3956 . 2  |-  ( ph  ->  if ( ran  F  C_ 
{ y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) } ,  ( 0g `  G ) ,  if ( A  e.  ran  ... , 
( iota z E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) ) ) ) )  =  if ( ran  F  C_  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } , 
( 0g `  H
) ,  if ( A  e.  ran  ... ,  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ,  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) ) ) ) ) )
8327difeq2d 3608 . . . 4  |-  ( ph  ->  ( _V  \  {  .0.  } )  =  ( _V  \  { y  e.  B  |  A. x  e.  B  (
( y  .+  x
)  =  x  /\  ( x  .+  y )  =  x ) } ) )
8483imaeq2d 5325 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  =  ( `' F "
( _V  \  {
y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) } ) ) )
85 gsumress.a . . 3  |-  ( ph  ->  A  e.  X )
86 gsumress.f . . . 4  |-  ( ph  ->  F : A --> S )
8786, 1fssd 5722 . . 3  |-  ( ph  ->  F : A --> B )
8816, 17, 18, 19, 84, 15, 85, 87gsumval 16097 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  if ( ran  F  C_  { y  e.  B  |  A. x  e.  B  ( ( y  .+  x )  =  x  /\  ( x  .+  y )  =  x ) } ,  ( 0g `  G ) ,  if ( A  e.  ran  ... , 
( iota z E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) ) ) ) ) )
8964difeq2d 3608 . . . 4  |-  ( ph  ->  ( _V  \  {  .0.  } )  =  ( _V  \  { y  e.  ( Base `  H
)  |  A. x  e.  ( Base `  H
) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } ) )
9089imaeq2d 5325 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  =  ( `' F "
( _V  \  {
y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } ) ) )
9136feq3d 5701 . . . 4  |-  ( ph  ->  ( F : A --> S 
<->  F : A --> ( Base `  H ) ) )
9286, 91mpbid 210 . . 3  |-  ( ph  ->  F : A --> ( Base `  H ) )
9353, 54, 55, 56, 90, 52, 85, 92gsumval 16097 . 2  |-  ( ph  ->  ( H  gsumg  F )  =  if ( ran  F  C_  { y  e.  ( Base `  H )  |  A. x  e.  ( Base `  H ) ( ( y ( +g  `  H
) x )  =  x  /\  ( x ( +g  `  H
) y )  =  x ) } , 
( 0g `  H
) ,  if ( A  e.  ran  ... ,  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ,  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  /\  z  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) ) ) ) ) )
9482, 88, 933eqtr4d 2505 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823   A.wral 2804   E.wrex 2805   {crab 2808   _Vcvv 3106    \ cdif 3458    C_ wss 3461   ifcif 3929   {csn 4016   `'ccnv 4987   ran crn 4989   "cima 4991    o. ccom 4992   iotacio 5532   -->wf 5566   -1-1-onto->wf1o 5569   ` cfv 5570  (class class class)co 6270   1c1 9482   ZZ>=cuz 11082   ...cfz 11675    seqcseq 12089   #chash 12387   Basecbs 14716   ↾s cress 14717   +g cplusg 14784   0gc0g 14929    gsumg cgsu 14930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-seq 12090  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-0g 14931  df-gsum 14932
This theorem is referenced by:  gsumsubm  16203  regsumsupp  18831  frlmgsumOLD  18972  frlmgsum  18973  imasdsf1olem  21042  regsumfsum  28007  esumpfinvallem  28303  aacllem  33604
  Copyright terms: Public domain W3C validator