Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funtransport Structured version   Visualization version   GIF version

Theorem funtransport 31308
 Description: The TransportTo relationship is a function. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funtransport Fun TransportTo

Proof of Theorem funtransport
Dummy variables 𝑚 𝑛 𝑝 𝑞 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3086 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) ↔ (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
2 simp1 1054 . . . . . . . . . . 11 ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) → 𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))
3 simp1 1054 . . . . . . . . . . 11 ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) → 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)))
42, 3anim12i 588 . . . . . . . . . 10 (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞))) → (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))))
54anim1i 590 . . . . . . . . 9 ((((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞))) ∧ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) ∧ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
65an4s 865 . . . . . . . 8 ((((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) ∧ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
7 xp1st 7089 . . . . . . . . . 10 (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) → (1st𝑝) ∈ (𝔼‘𝑛))
8 xp1st 7089 . . . . . . . . . 10 (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) → (1st𝑝) ∈ (𝔼‘𝑚))
9 axdimuniq 25593 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ (1st𝑝) ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ (1st𝑝) ∈ (𝔼‘𝑚))) → 𝑛 = 𝑚)
10 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝔼‘𝑛) = (𝔼‘𝑚))
1110riotaeqdv 6512 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))
1211eqeq2d 2620 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ↔ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))))
1312anbi2d 736 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
14 eqtr3 2631 . . . . . . . . . . . . . 14 ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦)
1513, 14syl6bir 243 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦))
169, 15syl 17 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ (1st𝑝) ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ (1st𝑝) ∈ (𝔼‘𝑚))) → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦))
1716an4s 865 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ ((1st𝑝) ∈ (𝔼‘𝑛) ∧ (1st𝑝) ∈ (𝔼‘𝑚))) → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦))
1817ex 449 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (((1st𝑝) ∈ (𝔼‘𝑛) ∧ (1st𝑝) ∈ (𝔼‘𝑚)) → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦)))
197, 8, 18syl2ani 686 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦)))
2019impd 446 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) ∧ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦))
216, 20syl5 33 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦))
2221rexlimivv 3018 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦)
231, 22sylbir 224 . . . . 5 ((∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦)
2423gen2 1714 . . . 4 𝑥𝑦((∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦)
25 eqeq1 2614 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ↔ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))))
2625anbi2d 736 . . . . . . 7 (𝑥 = 𝑦 → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
2726rexbidv 3034 . . . . . 6 (𝑥 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
2810sqxpeqd 5065 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑚) × (𝔼‘𝑚)))
2928eleq2d 2673 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))))
3028eleq2d 2673 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))))
3129, 303anbi12d 1392 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ↔ (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞))))
3231, 12anbi12d 743 . . . . . . 7 (𝑛 = 𝑚 → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
3332cbvrexv 3148 . . . . . 6 (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))))
3427, 33syl6bb 275 . . . . 5 (𝑥 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
3534mo4 2505 . . . 4 (∃*𝑥𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∀𝑥𝑦((∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦))
3624, 35mpbir 220 . . 3 ∃*𝑥𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))
3736funoprab 6658 . 2 Fun {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))}
38 df-transport 31307 . . 3 TransportTo = {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))}
3938funeqi 5824 . 2 (Fun TransportTo ↔ Fun {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))})
4037, 39mpbir 220 1 Fun TransportTo
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031  ∀wal 1473   = wceq 1475   ∈ wcel 1977  ∃*wmo 2459   ≠ wne 2780  ∃wrex 2897  ⟨cop 4131   class class class wbr 4583   × cxp 5036  Fun wfun 5798  ‘cfv 5804  ℩crio 6510  {coprab 6550  1st c1st 7057  2nd c2nd 7058  ℕcn 10897  𝔼cee 25568   Btwn cbtwn 25569  Cgrccgr 25570  TransportToctransport 31306 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-z 11255  df-uz 11564  df-fz 12198  df-ee 25571  df-transport 31307 This theorem is referenced by:  fvtransport  31309
 Copyright terms: Public domain W3C validator