Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funtransport Structured version   Unicode version

Theorem funtransport 28229
Description: The TransportTo relationship is a function. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funtransport  |-  Fun TransportTo

Proof of Theorem funtransport
Dummy variables  m  n  p  q  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 2994 . . . . . 6  |-  ( E. n  e.  NN  E. m  e.  NN  (
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  <->  ( E. n  e.  NN  ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  E. m  e.  NN  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
2 simp1 988 . . . . . . . . . . 11  |-  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  ->  p  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )
3 simp1 988 . . . . . . . . . . 11  |-  ( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  ->  p  e.  ( ( EE `  m )  X.  ( EE `  m ) ) )
42, 3anim12i 566 . . . . . . . . . 10  |-  ( ( ( p  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  ( p  e.  (
( EE `  m
)  X.  ( EE
`  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) ) )  ->  ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  p  e.  ( ( EE `  m
)  X.  ( EE
`  m ) ) ) )
54anim1i 568 . . . . . . . . 9  |-  ( ( ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  ( p  e.  (
( EE `  m
)  X.  ( EE
`  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) ) )  /\  ( x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  ( (
p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  p  e.  ( ( EE `  m )  X.  ( EE `  m
) ) )  /\  ( x  =  ( iota_ r  e.  ( EE
`  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
65an4s 822 . . . . . . . 8  |-  ( ( ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  ( (
p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  p  e.  ( ( EE `  m )  X.  ( EE `  m
) ) )  /\  ( x  =  ( iota_ r  e.  ( EE
`  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
7 xp1st 6719 . . . . . . . . . 10  |-  ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  ->  ( 1st `  p )  e.  ( EE `  n
) )
8 xp1st 6719 . . . . . . . . . 10  |-  ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  ->  ( 1st `  p )  e.  ( EE `  m
) )
9 axdimuniq 23338 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\  ( 1st `  p
)  e.  ( EE
`  n ) )  /\  ( m  e.  NN  /\  ( 1st `  p )  e.  ( EE `  m ) ) )  ->  n  =  m )
10 fveq2 5802 . . . . . . . . . . . . . . . . 17  |-  ( n  =  m  ->  ( EE `  n )  =  ( EE `  m
) )
1110riotaeqdv 6165 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  ( iota_ r  e.  ( EE
`  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )
1211eqeq2d 2468 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  <->  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )
1312anbi2d 703 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( x  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <-> 
( x  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
14 eqtr3 2482 . . . . . . . . . . . . . 14  |-  ( ( x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y )
1513, 14syl6bir 229 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( x  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) )
169, 15syl 16 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\  ( 1st `  p
)  e.  ( EE
`  n ) )  /\  ( m  e.  NN  /\  ( 1st `  p )  e.  ( EE `  m ) ) )  ->  (
( x  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) )
1716an4s 822 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\  m  e.  NN )  /\  ( ( 1st `  p )  e.  ( EE `  n )  /\  ( 1st `  p
)  e.  ( EE
`  m ) ) )  ->  ( (
x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) )
1817ex 434 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( ( ( 1st `  p )  e.  ( EE `  n )  /\  ( 1st `  p
)  e.  ( EE
`  m ) )  ->  ( ( x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) )  /\  y  =  (
iota_ r  e.  ( EE `  m ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) ) )
197, 8, 18syl2ani 656 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  p  e.  ( ( EE `  m
)  X.  ( EE
`  m ) ) )  ->  ( (
x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  ->  x  =  y ) ) )
2019impd 431 . . . . . . . 8  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  p  e.  ( ( EE `  m )  X.  ( EE `  m ) ) )  /\  ( x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) )  /\  y  =  (
iota_ r  e.  ( EE `  m ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y ) )
216, 20syl5 32 . . . . . . 7  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( ( ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  /\  x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) ) )  /\  ( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  /\  y  =  ( iota_ r  e.  ( EE `  m
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) ) ) )  ->  x  =  y ) )
2221rexlimivv 2952 . . . . . 6  |-  ( E. n  e.  NN  E. m  e.  NN  (
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y )
231, 22sylbir 213 . . . . 5  |-  ( ( E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  E. m  e.  NN  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y )
2423gen2 1593 . . . 4  |-  A. x A. y ( ( E. n  e.  NN  (
( p  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  E. m  e.  NN  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y )
25 eqeq1 2458 . . . . . . . 8  |-  ( x  =  y  ->  (
x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  <->  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )
2625anbi2d 703 . . . . . . 7  |-  ( x  =  y  ->  (
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <-> 
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
2726rexbidv 2868 . . . . . 6  |-  ( x  =  y  ->  ( E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <->  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
2810, 10xpeq12d 4976 . . . . . . . . . 10  |-  ( n  =  m  ->  (
( EE `  n
)  X.  ( EE
`  n ) )  =  ( ( EE
`  m )  X.  ( EE `  m
) ) )
2928eleq2d 2524 . . . . . . . . 9  |-  ( n  =  m  ->  (
p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  p  e.  ( ( EE `  m )  X.  ( EE `  m ) ) ) )
3028eleq2d 2524 . . . . . . . . 9  |-  ( n  =  m  ->  (
q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  q  e.  ( ( EE `  m )  X.  ( EE `  m ) ) ) )
3129, 303anbi12d 1291 . . . . . . . 8  |-  ( n  =  m  ->  (
( p  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  <->  ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) ) ) )
3231, 12anbi12d 710 . . . . . . 7  |-  ( n  =  m  ->  (
( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <-> 
( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
3332cbvrexv 3054 . . . . . 6  |-  ( E. n  e.  NN  (
( p  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <->  E. m  e.  NN  ( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )
3427, 33syl6bb 261 . . . . 5  |-  ( x  =  y  ->  ( E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <->  E. m  e.  NN  ( ( p  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  q  e.  ( ( EE `  m
)  X.  ( EE
`  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) ) )
3534mo4 2326 . . . 4  |-  ( E* x E. n  e.  NN  ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <->  A. x A. y ( ( E. n  e.  NN  ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  /\  E. m  e.  NN  ( ( p  e.  ( ( EE
`  m )  X.  ( EE `  m
) )  /\  q  e.  ( ( EE `  m )  X.  ( EE `  m ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  y  =  ( iota_ r  e.  ( EE `  m ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) )  ->  x  =  y ) )
3624, 35mpbir 209 . . 3  |-  E* x E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )
3736funoprab 6303 . 2  |-  Fun  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) }
38 df-transport 28228 . . 3  |- TransportTo  =  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) }
3938funeqi 5549 . 2  |-  ( Fun TransportTo  <->  Fun  {
<. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) } )
4037, 39mpbir 209 1  |-  Fun TransportTo
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965   A.wal 1368    = wceq 1370    e. wcel 1758   E*wmo 2263    =/= wne 2648   E.wrex 2800   <.cop 3994   class class class wbr 4403    X. cxp 4949   Fun wfun 5523   ` cfv 5529   iota_crio 6163   {coprab 6204   1stc1st 6688   2ndc2nd 6689   NNcn 10437   EEcee 23313    Btwn cbtwn 23314  Cgrccgr 23315  TransportToctransport 28227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-map 7329  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-nn 10438  df-z 10762  df-uz 10977  df-fz 11559  df-ee 23316  df-transport 28228
This theorem is referenced by:  fvtransport  28230
  Copyright terms: Public domain W3C validator