Step | Hyp | Ref
| Expression |
1 | | 0nn0 11184 |
. . . . 5
⊢ 0 ∈
ℕ0 |
2 | 1 | a1i 11 |
. . . 4
⊢ ((∅
= 𝑀 ∨ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → 0 ∈
ℕ0) |
3 | | oveq2 6557 |
. . . . . . 7
⊢ (𝑚 = 0 → (0...𝑚) = (0...0)) |
4 | 3 | sseq2d 3596 |
. . . . . 6
⊢ (𝑚 = 0 → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...0))) |
5 | 4 | ralbidv 2969 |
. . . . 5
⊢ (𝑚 = 0 → (∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...0))) |
6 | 5 | adantl 481 |
. . . 4
⊢
(((∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ 𝑚 = 0) → (∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...0))) |
7 | | ral0 4028 |
. . . . . 6
⊢
∀𝑓 ∈
∅ (𝑓 supp 𝑍) ⊆
(0...0) |
8 | | raleq 3115 |
. . . . . 6
⊢ (∅
= 𝑀 → (∀𝑓 ∈ ∅ (𝑓 supp 𝑍) ⊆ (0...0) ↔ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...0))) |
9 | 7, 8 | mpbii 222 |
. . . . 5
⊢ (∅
= 𝑀 → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...0)) |
10 | | 0ss 3924 |
. . . . . . 7
⊢ ∅
⊆ (0...0) |
11 | | sseq1 3589 |
. . . . . . 7
⊢ ((𝑓 supp 𝑍) = ∅ → ((𝑓 supp 𝑍) ⊆ (0...0) ↔ ∅ ⊆
(0...0))) |
12 | 10, 11 | mpbiri 247 |
. . . . . 6
⊢ ((𝑓 supp 𝑍) = ∅ → (𝑓 supp 𝑍) ⊆ (0...0)) |
13 | 12 | ralimi 2936 |
. . . . 5
⊢
(∀𝑓 ∈
𝑀 (𝑓 supp 𝑍) = ∅ → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...0)) |
14 | 9, 13 | jaoi 393 |
. . . 4
⊢ ((∅
= 𝑀 ∨ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...0)) |
15 | 2, 6, 14 | rspcedvd 3289 |
. . 3
⊢ ((∅
= 𝑀 ∨ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑚 ∈ ℕ0
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)) |
16 | 15 | 2a1d 26 |
. 2
⊢ ((∅
= 𝑀 ∨ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → ((𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))) |
17 | | simplr 788 |
. . . . 5
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) |
18 | | simpr 476 |
. . . . . 6
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) |
19 | | ioran 510 |
. . . . . . . . . 10
⊢ (¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅)) |
20 | | oveq1 6556 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (𝑓 supp 𝑍) = (𝑔 supp 𝑍)) |
21 | 20 | eqeq1d 2612 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → ((𝑓 supp 𝑍) = ∅ ↔ (𝑔 supp 𝑍) = ∅)) |
22 | 21 | cbvralv 3147 |
. . . . . . . . . . . 12
⊢
(∀𝑓 ∈
𝑀 (𝑓 supp 𝑍) = ∅ ↔ ∀𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∅) |
23 | 22 | notbii 309 |
. . . . . . . . . . 11
⊢ (¬
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅ ↔ ¬ ∀𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∅) |
24 | 23 | anbi2i 726 |
. . . . . . . . . 10
⊢ ((¬
∅ = 𝑀 ∧ ¬
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∅)) |
25 | 19, 24 | bitri 263 |
. . . . . . . . 9
⊢ (¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∅)) |
26 | | rexnal 2978 |
. . . . . . . . . . 11
⊢
(∃𝑔 ∈
𝑀 ¬ (𝑔 supp 𝑍) = ∅ ↔ ¬ ∀𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∅) |
27 | | df-ne 2782 |
. . . . . . . . . . . . 13
⊢ ((𝑔 supp 𝑍) ≠ ∅ ↔ ¬ (𝑔 supp 𝑍) = ∅) |
28 | 27 | bicomi 213 |
. . . . . . . . . . . 12
⊢ (¬
(𝑔 supp 𝑍) = ∅ ↔ (𝑔 supp 𝑍) ≠ ∅) |
29 | 28 | rexbii 3023 |
. . . . . . . . . . 11
⊢
(∃𝑔 ∈
𝑀 ¬ (𝑔 supp 𝑍) = ∅ ↔ ∃𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
30 | 26, 29 | sylbb1 226 |
. . . . . . . . . 10
⊢ (¬
∀𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∅ → ∃𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
31 | 30 | adantl 481 |
. . . . . . . . 9
⊢ ((¬
∅ = 𝑀 ∧ ¬
∀𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∅) → ∃𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
32 | 25, 31 | sylbi 206 |
. . . . . . . 8
⊢ (¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
33 | 32 | ad2antrr 758 |
. . . . . . 7
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∃𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
34 | | iunn0 4516 |
. . . . . . 7
⊢
(∃𝑔 ∈
𝑀 (𝑔 supp 𝑍) ≠ ∅ ↔ ∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
35 | 33, 34 | sylib 207 |
. . . . . 6
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
36 | 18, 35 | jca 553 |
. . . . 5
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅)) |
37 | | oveq1 6556 |
. . . . . . 7
⊢ (𝑔 = 𝑓 → (𝑔 supp 𝑍) = (𝑓 supp 𝑍)) |
38 | 37 | cbviunv 4495 |
. . . . . 6
⊢ ∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∪
𝑓 ∈ 𝑀 (𝑓 supp 𝑍) |
39 | | eqid 2610 |
. . . . . 6
⊢
sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) = sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) |
40 | 38, 39 | fsuppmapnn0fiublem 12651 |
. . . . 5
⊢ ((𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → ((∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) → sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) ∈
ℕ0)) |
41 | 17, 36, 40 | sylc 63 |
. . . 4
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) ∈
ℕ0) |
42 | | nfv 1830 |
. . . . . . . . . 10
⊢
Ⅎ𝑓∅ =
𝑀 |
43 | | nfra1 2925 |
. . . . . . . . . 10
⊢
Ⅎ𝑓∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅ |
44 | 42, 43 | nfor 1822 |
. . . . . . . . 9
⊢
Ⅎ𝑓(∅ =
𝑀 ∨ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) |
45 | 44 | nfn 1768 |
. . . . . . . 8
⊢
Ⅎ𝑓 ¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) |
46 | | nfv 1830 |
. . . . . . . 8
⊢
Ⅎ𝑓(𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) |
47 | 45, 46 | nfan 1816 |
. . . . . . 7
⊢
Ⅎ𝑓(¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) |
48 | | nfra1 2925 |
. . . . . . 7
⊢
Ⅎ𝑓∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 |
49 | 47, 48 | nfan 1816 |
. . . . . 6
⊢
Ⅎ𝑓((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) |
50 | | nfv 1830 |
. . . . . 6
⊢
Ⅎ𝑓 𝑚 = sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) |
51 | 49, 50 | nfan 1816 |
. . . . 5
⊢
Ⅎ𝑓(((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup(∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )) |
52 | | oveq2 6557 |
. . . . . . 7
⊢ (𝑚 = sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) → (0...𝑚) = (0...sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ))) |
53 | 52 | sseq2d 3596 |
. . . . . 6
⊢ (𝑚 = sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )))) |
54 | 53 | adantl 481 |
. . . . 5
⊢ ((((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup(∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )))) |
55 | 51, 54 | ralbid 2966 |
. . . 4
⊢ ((((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup(∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )) → (∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )))) |
56 | | rexnal 2978 |
. . . . . . . . . . 11
⊢
(∃𝑓 ∈
𝑀 ¬ (𝑓 supp 𝑍) = ∅ ↔ ¬ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) |
57 | | df-ne 2782 |
. . . . . . . . . . . . 13
⊢ ((𝑓 supp 𝑍) ≠ ∅ ↔ ¬ (𝑓 supp 𝑍) = ∅) |
58 | 57 | bicomi 213 |
. . . . . . . . . . . 12
⊢ (¬
(𝑓 supp 𝑍) = ∅ ↔ (𝑓 supp 𝑍) ≠ ∅) |
59 | 58 | rexbii 3023 |
. . . . . . . . . . 11
⊢
(∃𝑓 ∈
𝑀 ¬ (𝑓 supp 𝑍) = ∅ ↔ ∃𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ≠ ∅) |
60 | 56, 59 | sylbb1 226 |
. . . . . . . . . 10
⊢ (¬
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅ → ∃𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ≠ ∅) |
61 | 60 | adantl 481 |
. . . . . . . . 9
⊢ ((¬
∅ = 𝑀 ∧ ¬
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ≠ ∅) |
62 | 19, 61 | sylbi 206 |
. . . . . . . 8
⊢ (¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ≠ ∅) |
63 | 62 | ad2antrr 758 |
. . . . . . 7
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∃𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ≠ ∅) |
64 | | iunn0 4516 |
. . . . . . . 8
⊢
(∃𝑓 ∈
𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ ∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ≠ ∅) |
65 | 20 | cbviunv 4495 |
. . . . . . . . 9
⊢ ∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) |
66 | 65 | neeq1i 2846 |
. . . . . . . 8
⊢ (∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ ∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
67 | 64, 66 | bitri 263 |
. . . . . . 7
⊢
(∃𝑓 ∈
𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ ∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
68 | 63, 67 | sylib 207 |
. . . . . 6
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
69 | 18, 68 | jca 553 |
. . . . 5
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅)) |
70 | 38, 39 | fsuppmapnn0fiub 12652 |
. . . . 5
⊢ ((𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → ((∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )))) |
71 | 17, 69, 70 | sylc 63 |
. . . 4
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ))) |
72 | 41, 55, 71 | rspcedvd 3289 |
. . 3
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)) |
73 | 72 | exp31 628 |
. 2
⊢ (¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → ((𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))) |
74 | 16, 73 | pm2.61i 175 |
1
⊢ ((𝑀 ⊆ (𝑅 ↑𝑚
ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))) |