Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiubOLD Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiubOLD 12653
 Description: Obsolete proof of fsuppmapnn0fiub 12652 as of 2-Aug-2021. (Contributed by AV, 2-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
fsuppmapnn0fiub.u 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
fsuppmapnn0fiub.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
fsuppmapnn0fiubOLD ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆)))
Distinct variable groups:   𝑓,𝑀   𝑅,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑍
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem fsuppmapnn0fiubOLD
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . . 4 𝑓(𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)
2 nfra1 2925 . . . . 5 𝑓𝑓𝑀 𝑓 finSupp 𝑍
3 nfv 1830 . . . . 5 𝑓 𝑈 ≠ ∅
42, 3nfan 1816 . . . 4 𝑓(∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)
51, 4nfan 1816 . . 3 𝑓((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅))
6 suppssdm 7195 . . . . . . . . . . 11 (𝑓 supp 𝑍) ⊆ dom 𝑓
7 ssel2 3563 . . . . . . . . . . . . 13 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑓𝑀) → 𝑓 ∈ (𝑅𝑚0))
8 elmapfn 7766 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅𝑚0) → 𝑓 Fn ℕ0)
9 fndm 5904 . . . . . . . . . . . . . 14 (𝑓 Fn ℕ0 → dom 𝑓 = ℕ0)
10 eqimss 3620 . . . . . . . . . . . . . 14 (dom 𝑓 = ℕ0 → dom 𝑓 ⊆ ℕ0)
119, 10syl 17 . . . . . . . . . . . . 13 (𝑓 Fn ℕ0 → dom 𝑓 ⊆ ℕ0)
127, 8, 113syl 18 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
13123ad2antl1 1216 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
146, 13syl5ss 3579 . . . . . . . . . 10 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℕ0)
1514sseld 3567 . . . . . . . . 9 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ ℕ0))
1615adantlr 747 . . . . . . . 8 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ ℕ0))
1716imp 444 . . . . . . 7 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 ∈ ℕ0)
18 fsuppmapnn0fiub.u . . . . . . . . . 10 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
19 fsuppmapnn0fiub.s . . . . . . . . . 10 𝑆 = sup(𝑈, ℝ, < )
2018, 19fsuppmapnn0fiublem 12651 . . . . . . . . 9 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → 𝑆 ∈ ℕ0))
2120imp 444 . . . . . . . 8 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑆 ∈ ℕ0)
2221ad2antrr 758 . . . . . . 7 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑆 ∈ ℕ0)
237, 8, 93syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
2423ex 449 . . . . . . . . . . . . . . . . . 18 (𝑀 ⊆ (𝑅𝑚0) → (𝑓𝑀 → dom 𝑓 = ℕ0))
25243ad2ant1 1075 . . . . . . . . . . . . . . . . 17 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀 → dom 𝑓 = ℕ0))
2625adantr 480 . . . . . . . . . . . . . . . 16 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → dom 𝑓 = ℕ0))
2726imp 444 . . . . . . . . . . . . . . 15 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
28 nn0ssre 11173 . . . . . . . . . . . . . . 15 0 ⊆ ℝ
2927, 28syl6eqss 3618 . . . . . . . . . . . . . 14 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℝ)
306, 29syl5ss 3579 . . . . . . . . . . . . 13 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℝ)
3130ex 449 . . . . . . . . . . . 12 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ ℝ))
325, 31ralrimi 2940 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3332ad2antrr 758 . . . . . . . . . 10 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
34 iunss 4497 . . . . . . . . . 10 ( 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3533, 34sylibr 223 . . . . . . . . 9 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3618, 35syl5eqss 3612 . . . . . . . 8 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑈 ⊆ ℝ)
37 simp2 1055 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → 𝑀 ∈ Fin)
38 id 22 . . . . . . . . . . . . . . 15 (𝑓 finSupp 𝑍𝑓 finSupp 𝑍)
3938fsuppimpd 8165 . . . . . . . . . . . . . 14 (𝑓 finSupp 𝑍 → (𝑓 supp 𝑍) ∈ Fin)
4039ralimi 2936 . . . . . . . . . . . . 13 (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4140adantr 480 . . . . . . . . . . . 12 ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4237, 41anim12i 588 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin))
4342ad2antrr 758 . . . . . . . . . 10 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → (𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin))
44 iunfi 8137 . . . . . . . . . 10 ((𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4543, 44syl 17 . . . . . . . . 9 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4618, 45syl5eqel 2692 . . . . . . . 8 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑈 ∈ Fin)
47 simpr 476 . . . . . . . . . . . 12 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → 𝑓𝑀)
48 oveq1 6556 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (𝑔 supp 𝑍) = (𝑓 supp 𝑍))
4948eleq2d 2673 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (𝑥 ∈ (𝑔 supp 𝑍) ↔ 𝑥 ∈ (𝑓 supp 𝑍)))
5049adantl 481 . . . . . . . . . . . 12 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑔 = 𝑓) → (𝑥 ∈ (𝑔 supp 𝑍) ↔ 𝑥 ∈ (𝑓 supp 𝑍)))
5147, 50rspcedv 3286 . . . . . . . . . . 11 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → ∃𝑔𝑀 𝑥 ∈ (𝑔 supp 𝑍)))
5251imp 444 . . . . . . . . . 10 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → ∃𝑔𝑀 𝑥 ∈ (𝑔 supp 𝑍))
53 oveq1 6556 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓 supp 𝑍) = (𝑔 supp 𝑍))
5453eleq2d 2673 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑥 ∈ (𝑓 supp 𝑍) ↔ 𝑥 ∈ (𝑔 supp 𝑍)))
5554cbvrexv 3148 . . . . . . . . . 10 (∃𝑓𝑀 𝑥 ∈ (𝑓 supp 𝑍) ↔ ∃𝑔𝑀 𝑥 ∈ (𝑔 supp 𝑍))
5652, 55sylibr 223 . . . . . . . . 9 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → ∃𝑓𝑀 𝑥 ∈ (𝑓 supp 𝑍))
5718eleq2i 2680 . . . . . . . . . 10 (𝑥𝑈𝑥 𝑓𝑀 (𝑓 supp 𝑍))
58 eliun 4460 . . . . . . . . . 10 (𝑥 𝑓𝑀 (𝑓 supp 𝑍) ↔ ∃𝑓𝑀 𝑥 ∈ (𝑓 supp 𝑍))
5957, 58bitri 263 . . . . . . . . 9 (𝑥𝑈 ↔ ∃𝑓𝑀 𝑥 ∈ (𝑓 supp 𝑍))
6056, 59sylibr 223 . . . . . . . 8 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑈)
6119a1i 11 . . . . . . . 8 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑆 = sup(𝑈, ℝ, < ))
6236, 46, 60, 61supfirege 10886 . . . . . . 7 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑆)
63 elfz2nn0 12300 . . . . . . 7 (𝑥 ∈ (0...𝑆) ↔ (𝑥 ∈ ℕ0𝑆 ∈ ℕ0𝑥𝑆))
6417, 22, 62, 63syl3anbrc 1239 . . . . . 6 (((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 ∈ (0...𝑆))
6564ex 449 . . . . 5 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ (0...𝑆)))
6665ssrdv 3574 . . . 4 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ (0...𝑆))
6766ex 449 . . 3 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ (0...𝑆)))
685, 67ralrimi 2940 . 2 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆))
6968ex 449 1 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540  ∅c0 3874  ∪ ciun 4455   class class class wbr 4583  dom cdm 5038   Fn wfn 5799  (class class class)co 6549   supp csupp 7182   ↑𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  supcsup 8229  ℝcr 9814  0cc0 9815   < clt 9953   ≤ cle 9954  ℕ0cn0 11169  ...cfz 12197 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator