Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup3 Structured version   Visualization version   GIF version

Theorem frmdup3 17227
 Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
frmdup3.m 𝑀 = (freeMnd‘𝐼)
frmdup3.b 𝐵 = (Base‘𝐺)
frmdup3.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdup3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚𝑈) = 𝐴)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝑚,𝐺   𝑚,𝐼   𝑚,𝑀   𝑈,𝑚   𝑚,𝑉

Proof of Theorem frmdup3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup3.m . . 3 𝑀 = (freeMnd‘𝐼)
2 frmdup3.b . . 3 𝐵 = (Base‘𝐺)
3 eqid 2610 . . 3 (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))
4 simp1 1054 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐺 ∈ Mnd)
5 simp2 1055 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐼𝑉)
6 simp3 1056 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐴:𝐼𝐵)
71, 2, 3, 4, 5, 6frmdup1 17224 . 2 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∈ (𝑀 MndHom 𝐺))
84adantr 480 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝐺 ∈ Mnd)
95adantr 480 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝐼𝑉)
106adantr 480 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝐴:𝐼𝐵)
11 frmdup3.u . . . . 5 𝑈 = (varFMnd𝐼)
12 simpr 476 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝑦𝐼)
131, 2, 3, 8, 9, 10, 11, 12frmdup2 17225 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦)) = (𝐴𝑦))
1413mpteq2dva 4672 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑦𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦))) = (𝑦𝐼 ↦ (𝐴𝑦)))
15 eqid 2610 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
1615, 2mhmf 17163 . . . . 5 ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∈ (𝑀 MndHom 𝐺) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))):(Base‘𝑀)⟶𝐵)
177, 16syl 17 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))):(Base‘𝑀)⟶𝐵)
1811vrmdf 17218 . . . . . 6 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
19183ad2ant2 1076 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝑈:𝐼⟶Word 𝐼)
201, 15frmdbas 17212 . . . . . . 7 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
21203ad2ant2 1076 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (Base‘𝑀) = Word 𝐼)
2221feq3d 5945 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑈:𝐼⟶(Base‘𝑀) ↔ 𝑈:𝐼⟶Word 𝐼))
2319, 22mpbird 246 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝑈:𝐼⟶(Base‘𝑀))
24 fcompt 6306 . . . 4 (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))):(Base‘𝑀)⟶𝐵𝑈:𝐼⟶(Base‘𝑀)) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = (𝑦𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦))))
2517, 23, 24syl2anc 691 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = (𝑦𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦))))
266feqmptd 6159 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐴 = (𝑦𝐼 ↦ (𝐴𝑦)))
2714, 25, 263eqtr4d 2654 . 2 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = 𝐴)
281, 2, 11frmdup3lem 17226 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝑚 ∈ (𝑀 MndHom 𝐺) ∧ (𝑚𝑈) = 𝐴)) → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))
2928expr 641 . . 3 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑚 ∈ (𝑀 MndHom 𝐺)) → ((𝑚𝑈) = 𝐴𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))))
3029ralrimiva 2949 . 2 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚𝑈) = 𝐴𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))))
31 coeq1 5201 . . . 4 (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) → (𝑚𝑈) = ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈))
3231eqeq1d 2612 . . 3 (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) → ((𝑚𝑈) = 𝐴 ↔ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = 𝐴))
3332eqreu 3365 . 2 (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∈ (𝑀 MndHom 𝐺) ∧ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = 𝐴 ∧ ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚𝑈) = 𝐴𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚𝑈) = 𝐴)
347, 27, 30, 33syl3anc 1318 1 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚𝑈) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃!wreu 2898   ↦ cmpt 4643   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  Word cword 13146  Basecbs 15695   Σg cgsu 15924  Mndcmnd 17117   MndHom cmhm 17156  freeMndcfrmd 17207  varFMndcvrmd 17208 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-frmd 17209  df-vrmd 17210 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator