MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup3 Structured version   Unicode version

Theorem frmdup3 15549
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frmdup3.m  |-  M  =  (freeMnd `  I )
frmdup3.b  |-  B  =  ( Base `  G
)
frmdup3.u  |-  U  =  (varFMnd `  I )
Assertion
Ref Expression
frmdup3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  E! m  e.  ( M MndHom  G ) ( m  o.  U
)  =  A )
Distinct variable groups:    A, m    B, m    m, G    m, I    U, m    m, M   
m, V

Proof of Theorem frmdup3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup3.m . . 3  |-  M  =  (freeMnd `  I )
2 frmdup3.b . . 3  |-  B  =  ( Base `  G
)
3 eqid 2443 . . 3  |-  ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) )  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )
4 simp1 988 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  G  e.  Mnd )
5 simp2 989 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  I  e.  V
)
6 simp3 990 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  A : I --> B )
71, 2, 3, 4, 5, 6frmdup1 15547 . 2  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) )  e.  ( M MndHom  G ) )
84adantr 465 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  G  e.  Mnd )
95adantr 465 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  I  e.  V )
106adantr 465 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  A :
I --> B )
11 frmdup3.u . . . . 5  |-  U  =  (varFMnd `  I )
12 simpr 461 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  y  e.  I )
131, 2, 3, 8, 9, 10, 11, 12frmdup2 15548 . . . 4  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  ( (
x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) `  ( U `  y ) )  =  ( A `
 y ) )
1413mpteq2dva 4383 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( y  e.  I  |->  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) ) `  ( U `  y ) ) )  =  ( y  e.  I  |->  ( A `  y ) ) )
15 eqid 2443 . . . . . 6  |-  ( Base `  M )  =  (
Base `  M )
1615, 2mhmf 15474 . . . . 5  |-  ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )  e.  ( M MndHom  G )  ->  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) ) : ( Base `  M ) --> B )
177, 16syl 16 . . . 4  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) ) : ( Base `  M ) --> B )
1811vrmdf 15541 . . . . . 6  |-  ( I  e.  V  ->  U : I -->Word  I )
19183ad2ant2 1010 . . . . 5  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  U : I -->Word  I )
201, 15frmdbas 15535 . . . . . . 7  |-  ( I  e.  V  ->  ( Base `  M )  = Word 
I )
21203ad2ant2 1010 . . . . . 6  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( Base `  M
)  = Word  I )
22 feq3 5549 . . . . . 6  |-  ( (
Base `  M )  = Word  I  ->  ( U : I --> ( Base `  M )  <->  U :
I -->Word  I ) )
2321, 22syl 16 . . . . 5  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( U :
I --> ( Base `  M
)  <->  U : I -->Word  I )
)
2419, 23mpbird 232 . . . 4  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  U : I --> ( Base `  M
) )
25 fcompt 5884 . . . 4  |-  ( ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) : ( Base `  M
) --> B  /\  U : I --> ( Base `  M ) )  -> 
( ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) )  o.  U )  =  ( y  e.  I  |->  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) ) `  ( U `  y ) ) ) )
2617, 24, 25syl2anc 661 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) )  o.  U )  =  ( y  e.  I  |->  ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) `  ( U `  y ) ) ) )
276feqmptd 5749 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  A  =  ( y  e.  I  |->  ( A `  y ) ) )
2814, 26, 273eqtr4d 2485 . 2  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) )  o.  U )  =  A )
2915, 2mhmf 15474 . . . . . . . 8  |-  ( m  e.  ( M MndHom  G
)  ->  m :
( Base `  M ) --> B )
3029ad2antrl 727 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  m : ( Base `  M
) --> B )
3121adantr 465 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  ( Base `  M )  = Word 
I )
3231feq2d 5552 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  (
m : ( Base `  M ) --> B  <->  m :Word  I
--> B ) )
3330, 32mpbid 210 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  m :Word  I --> B )
3433feqmptd 5749 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  m  =  ( x  e. Word 
I  |->  ( m `  x ) ) )
35 simplrl 759 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  m  e.  ( M MndHom  G ) )
36 simpr 461 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  x  e. Word  I )
3724ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  U :
I --> ( Base `  M
) )
38 wrdco 12464 . . . . . . . . 9  |-  ( ( x  e. Word  I  /\  U : I --> ( Base `  M ) )  -> 
( U  o.  x
)  e. Word  ( Base `  M ) )
3936, 37, 38syl2anc 661 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( U  o.  x )  e. Word  ( Base `  M ) )
4015gsumwmhm 15528 . . . . . . . 8  |-  ( ( m  e.  ( M MndHom  G )  /\  ( U  o.  x )  e. Word  ( Base `  M
) )  ->  (
m `  ( M  gsumg  ( U  o.  x ) ) )  =  ( G  gsumg  ( m  o.  ( U  o.  x )
) ) )
4135, 39, 40syl2anc 661 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m `  ( M  gsumg  ( U  o.  x
) ) )  =  ( G  gsumg  ( m  o.  ( U  o.  x )
) ) )
425ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  I  e.  V )
431, 11frmdgsum 15545 . . . . . . . . 9  |-  ( ( I  e.  V  /\  x  e. Word  I )  ->  ( M  gsumg  ( U  o.  x
) )  =  x )
4442, 36, 43syl2anc 661 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( M  gsumg  ( U  o.  x ) )  =  x )
4544fveq2d 5700 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m `  ( M  gsumg  ( U  o.  x
) ) )  =  ( m `  x
) )
46 coass 5361 . . . . . . . . 9  |-  ( ( m  o.  U )  o.  x )  =  ( m  o.  ( U  o.  x )
)
47 simplrr 760 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m  o.  U )  =  A )
4847coeq1d 5006 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( (
m  o.  U )  o.  x )  =  ( A  o.  x
) )
4946, 48syl5eqr 2489 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m  o.  ( U  o.  x
) )  =  ( A  o.  x ) )
5049oveq2d 6112 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( G  gsumg  ( m  o.  ( U  o.  x ) ) )  =  ( G 
gsumg  ( A  o.  x
) ) )
5141, 45, 503eqtr3d 2483 . . . . . 6  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m `  x )  =  ( G  gsumg  ( A  o.  x
) ) )
5251mpteq2dva 4383 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  (
x  e. Word  I  |->  ( m `  x ) )  =  ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) ) )
5334, 52eqtrd 2475 . . . 4  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  m  =  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) ) )
5453expr 615 . . 3  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  m  e.  ( M MndHom  G ) )  ->  ( ( m  o.  U )  =  A  ->  m  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) ) )
5554ralrimiva 2804 . 2  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  A. m  e.  ( M MndHom  G ) ( ( m  o.  U
)  =  A  ->  m  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x ) ) ) ) )
56 coeq1 5002 . . . 4  |-  ( m  =  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) )  ->  ( m  o.  U )  =  ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )  o.  U ) )
5756eqeq1d 2451 . . 3  |-  ( m  =  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) )  ->  ( (
m  o.  U )  =  A  <->  ( (
x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )  o.  U )  =  A ) )
5857eqreu 3156 . 2  |-  ( ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )  e.  ( M MndHom  G )  /\  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) )  o.  U )  =  A  /\  A. m  e.  ( M MndHom  G ) ( ( m  o.  U )  =  A  ->  m  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) ) )  ->  E! m  e.  ( M MndHom  G ) ( m  o.  U
)  =  A )
597, 28, 55, 58syl3anc 1218 1  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  E! m  e.  ( M MndHom  G ) ( m  o.  U
)  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2720   E!wreu 2722    e. cmpt 4355    o. ccom 4849   -->wf 5419   ` cfv 5423  (class class class)co 6096  Word cword 12226   Basecbs 14179    gsumg cgsu 14384   Mndcmnd 15414   MndHom cmhm 15467  freeMndcfrmd 15530  varFMndcvrmd 15531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-map 7221  df-pm 7222  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-card 8114  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-n0 10585  df-z 10652  df-uz 10867  df-fz 11443  df-fzo 11554  df-seq 11812  df-hash 12109  df-word 12234  df-concat 12236  df-s1 12237  df-substr 12238  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-0g 14385  df-gsum 14386  df-mnd 15420  df-mhm 15469  df-submnd 15470  df-frmd 15532  df-vrmd 15533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator