MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup3 Structured version   Unicode version

Theorem frmdup3 15537
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frmdup3.m  |-  M  =  (freeMnd `  I )
frmdup3.b  |-  B  =  ( Base `  G
)
frmdup3.u  |-  U  =  (varFMnd `  I )
Assertion
Ref Expression
frmdup3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  E! m  e.  ( M MndHom  G ) ( m  o.  U
)  =  A )
Distinct variable groups:    A, m    B, m    m, G    m, I    U, m    m, M   
m, V

Proof of Theorem frmdup3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup3.m . . 3  |-  M  =  (freeMnd `  I )
2 frmdup3.b . . 3  |-  B  =  ( Base `  G
)
3 eqid 2441 . . 3  |-  ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) )  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )
4 simp1 983 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  G  e.  Mnd )
5 simp2 984 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  I  e.  V
)
6 simp3 985 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  A : I --> B )
71, 2, 3, 4, 5, 6frmdup1 15535 . 2  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) )  e.  ( M MndHom  G ) )
84adantr 462 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  G  e.  Mnd )
95adantr 462 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  I  e.  V )
106adantr 462 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  A :
I --> B )
11 frmdup3.u . . . . 5  |-  U  =  (varFMnd `  I )
12 simpr 458 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  y  e.  I )
131, 2, 3, 8, 9, 10, 11, 12frmdup2 15536 . . . 4  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  ( (
x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) `  ( U `  y ) )  =  ( A `
 y ) )
1413mpteq2dva 4375 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( y  e.  I  |->  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) ) `  ( U `  y ) ) )  =  ( y  e.  I  |->  ( A `  y ) ) )
15 eqid 2441 . . . . . 6  |-  ( Base `  M )  =  (
Base `  M )
1615, 2mhmf 15465 . . . . 5  |-  ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )  e.  ( M MndHom  G )  ->  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) ) : ( Base `  M ) --> B )
177, 16syl 16 . . . 4  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) ) : ( Base `  M ) --> B )
1811vrmdf 15529 . . . . . 6  |-  ( I  e.  V  ->  U : I -->Word  I )
19183ad2ant2 1005 . . . . 5  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  U : I -->Word  I )
201, 15frmdbas 15523 . . . . . . 7  |-  ( I  e.  V  ->  ( Base `  M )  = Word 
I )
21203ad2ant2 1005 . . . . . 6  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( Base `  M
)  = Word  I )
22 feq3 5541 . . . . . 6  |-  ( (
Base `  M )  = Word  I  ->  ( U : I --> ( Base `  M )  <->  U :
I -->Word  I ) )
2321, 22syl 16 . . . . 5  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( U :
I --> ( Base `  M
)  <->  U : I -->Word  I )
)
2419, 23mpbird 232 . . . 4  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  U : I --> ( Base `  M
) )
25 fcompt 5876 . . . 4  |-  ( ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) : ( Base `  M
) --> B  /\  U : I --> ( Base `  M ) )  -> 
( ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) )  o.  U )  =  ( y  e.  I  |->  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) ) `  ( U `  y ) ) ) )
2617, 24, 25syl2anc 656 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) )  o.  U )  =  ( y  e.  I  |->  ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) `  ( U `  y ) ) ) )
276feqmptd 5741 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  A  =  ( y  e.  I  |->  ( A `  y ) ) )
2814, 26, 273eqtr4d 2483 . 2  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) )  o.  U )  =  A )
2915, 2mhmf 15465 . . . . . . . 8  |-  ( m  e.  ( M MndHom  G
)  ->  m :
( Base `  M ) --> B )
3029ad2antrl 722 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  m : ( Base `  M
) --> B )
3121adantr 462 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  ( Base `  M )  = Word 
I )
3231feq2d 5544 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  (
m : ( Base `  M ) --> B  <->  m :Word  I
--> B ) )
3330, 32mpbid 210 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  m :Word  I --> B )
3433feqmptd 5741 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  m  =  ( x  e. Word 
I  |->  ( m `  x ) ) )
35 simplrl 754 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  m  e.  ( M MndHom  G ) )
36 simpr 458 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  x  e. Word  I )
3724ad2antrr 720 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  U :
I --> ( Base `  M
) )
38 wrdco 12455 . . . . . . . . 9  |-  ( ( x  e. Word  I  /\  U : I --> ( Base `  M ) )  -> 
( U  o.  x
)  e. Word  ( Base `  M ) )
3936, 37, 38syl2anc 656 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( U  o.  x )  e. Word  ( Base `  M ) )
4015gsumwmhm 15516 . . . . . . . 8  |-  ( ( m  e.  ( M MndHom  G )  /\  ( U  o.  x )  e. Word  ( Base `  M
) )  ->  (
m `  ( M  gsumg  ( U  o.  x ) ) )  =  ( G  gsumg  ( m  o.  ( U  o.  x )
) ) )
4135, 39, 40syl2anc 656 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m `  ( M  gsumg  ( U  o.  x
) ) )  =  ( G  gsumg  ( m  o.  ( U  o.  x )
) ) )
425ad2antrr 720 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  I  e.  V )
431, 11frmdgsum 15533 . . . . . . . . 9  |-  ( ( I  e.  V  /\  x  e. Word  I )  ->  ( M  gsumg  ( U  o.  x
) )  =  x )
4442, 36, 43syl2anc 656 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( M  gsumg  ( U  o.  x ) )  =  x )
4544fveq2d 5692 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m `  ( M  gsumg  ( U  o.  x
) ) )  =  ( m `  x
) )
46 coass 5353 . . . . . . . . 9  |-  ( ( m  o.  U )  o.  x )  =  ( m  o.  ( U  o.  x )
)
47 simplrr 755 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m  o.  U )  =  A )
4847coeq1d 4997 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( (
m  o.  U )  o.  x )  =  ( A  o.  x
) )
4946, 48syl5eqr 2487 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m  o.  ( U  o.  x
) )  =  ( A  o.  x ) )
5049oveq2d 6106 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( G  gsumg  ( m  o.  ( U  o.  x ) ) )  =  ( G 
gsumg  ( A  o.  x
) ) )
5141, 45, 503eqtr3d 2481 . . . . . 6  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m `  x )  =  ( G  gsumg  ( A  o.  x
) ) )
5251mpteq2dva 4375 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  (
x  e. Word  I  |->  ( m `  x ) )  =  ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) ) )
5334, 52eqtrd 2473 . . . 4  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  m  =  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) ) )
5453expr 612 . . 3  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  m  e.  ( M MndHom  G ) )  ->  ( ( m  o.  U )  =  A  ->  m  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) ) )
5554ralrimiva 2797 . 2  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  A. m  e.  ( M MndHom  G ) ( ( m  o.  U
)  =  A  ->  m  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x ) ) ) ) )
56 coeq1 4993 . . . 4  |-  ( m  =  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) )  ->  ( m  o.  U )  =  ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )  o.  U ) )
5756eqeq1d 2449 . . 3  |-  ( m  =  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) )  ->  ( (
m  o.  U )  =  A  <->  ( (
x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )  o.  U )  =  A ) )
5857eqreu 3148 . 2  |-  ( ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )  e.  ( M MndHom  G )  /\  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) )  o.  U )  =  A  /\  A. m  e.  ( M MndHom  G ) ( ( m  o.  U )  =  A  ->  m  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) ) )  ->  E! m  e.  ( M MndHom  G ) ( m  o.  U
)  =  A )
597, 28, 55, 58syl3anc 1213 1  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  E! m  e.  ( M MndHom  G ) ( m  o.  U
)  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   A.wral 2713   E!wreu 2715    e. cmpt 4347    o. ccom 4840   -->wf 5411   ` cfv 5415  (class class class)co 6090  Word cword 12217   Basecbs 14170    gsumg cgsu 14375   Mndcmnd 15405   MndHom cmhm 15458  freeMndcfrmd 15518  varFMndcvrmd 15519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-fzo 11545  df-seq 11803  df-hash 12100  df-word 12225  df-concat 12227  df-s1 12228  df-substr 12229  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-0g 14376  df-gsum 14377  df-mnd 15411  df-mhm 15460  df-submnd 15461  df-frmd 15520  df-vrmd 15521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator