Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evls1rhmlem | Structured version Visualization version GIF version |
Description: Lemma for evl1rhm 19517 and evls1rhm 19508 (formerly part of the proof of evl1rhm 19517): The first function of the composition forming the univariate polynomial evaluation map function for a (sub)ring is a ring homomorphism. (Contributed by AV, 11-Sep-2019.) |
Ref | Expression |
---|---|
evl1rhmlem.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1rhmlem.t | ⊢ 𝑇 = (𝑅 ↑s 𝐵) |
evl1rhmlem.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) |
Ref | Expression |
---|---|
evls1rhmlem | ⊢ (𝑅 ∈ CRing → 𝐹 ∈ ((𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1rhmlem.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) | |
2 | ovex 6577 | . . . . 5 ⊢ (𝐵 ↑𝑚 1𝑜) ∈ V | |
3 | eqid 2610 | . . . . . 6 ⊢ (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) = (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) | |
4 | evl1rhmlem.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4 | pwsbas 15970 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝐵 ↑𝑚 1𝑜) ∈ V) → (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) = (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))) |
6 | 2, 5 | mpan2 703 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) = (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))) |
7 | 6 | mpteq1d 4666 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) = (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))))) |
8 | 1, 7 | syl5eq 2656 | . 2 ⊢ (𝑅 ∈ CRing → 𝐹 = (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))))) |
9 | evl1rhmlem.t | . . 3 ⊢ 𝑇 = (𝑅 ↑s 𝐵) | |
10 | eqid 2610 | . . 3 ⊢ (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) = (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) | |
11 | crngring 18381 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
12 | fvex 6113 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
13 | 4, 12 | eqeltri 2684 | . . . 4 ⊢ 𝐵 ∈ V |
14 | 13 | a1i 11 | . . 3 ⊢ (𝑅 ∈ CRing → 𝐵 ∈ V) |
15 | 2 | a1i 11 | . . 3 ⊢ (𝑅 ∈ CRing → (𝐵 ↑𝑚 1𝑜) ∈ V) |
16 | df1o2 7459 | . . . . 5 ⊢ 1𝑜 = {∅} | |
17 | 0ex 4718 | . . . . 5 ⊢ ∅ ∈ V | |
18 | eqid 2610 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})) = (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})) | |
19 | 16, 13, 17, 18 | mapsnf1o3 7792 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})):𝐵–1-1-onto→(𝐵 ↑𝑚 1𝑜) |
20 | f1of 6050 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})):𝐵–1-1-onto→(𝐵 ↑𝑚 1𝑜) → (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})):𝐵⟶(𝐵 ↑𝑚 1𝑜)) | |
21 | 19, 20 | mp1i 13 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})):𝐵⟶(𝐵 ↑𝑚 1𝑜)) |
22 | 9, 3, 10, 11, 14, 15, 21 | pwsco1rhm 18561 | . 2 ⊢ (𝑅 ∈ CRing → (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∈ ((𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇)) |
23 | 8, 22 | eqeltrd 2688 | 1 ⊢ (𝑅 ∈ CRing → 𝐹 ∈ ((𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∅c0 3874 {csn 4125 ↦ cmpt 4643 × cxp 5036 ∘ ccom 5042 ⟶wf 5800 –1-1-onto→wf1o 5803 ‘cfv 5804 (class class class)co 6549 1𝑜c1o 7440 ↑𝑚 cmap 7744 Basecbs 15695 ↑s cpws 15930 CRingccrg 18371 RingHom crh 18535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-hom 15793 df-cco 15794 df-0g 15925 df-prds 15931 df-pws 15933 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-grp 17248 df-minusg 17249 df-ghm 17481 df-mgp 18313 df-ur 18325 df-ring 18372 df-cring 18373 df-rnghom 18538 |
This theorem is referenced by: evls1rhm 19508 evl1rhm 19517 |
Copyright terms: Public domain | W3C validator |