Step | Hyp | Ref
| Expression |
1 | | pwsco1rhm.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
2 | | pwsco1rhm.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
3 | | pwsco1rhm.z |
. . . . 5
⊢ 𝑍 = (𝑅 ↑s 𝐵) |
4 | 3 | pwsring 18438 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑊) → 𝑍 ∈ Ring) |
5 | 1, 2, 4 | syl2anc 691 |
. . 3
⊢ (𝜑 → 𝑍 ∈ Ring) |
6 | | pwsco1rhm.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
7 | | pwsco1rhm.y |
. . . . 5
⊢ 𝑌 = (𝑅 ↑s 𝐴) |
8 | 7 | pwsring 18438 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉) → 𝑌 ∈ Ring) |
9 | 1, 6, 8 | syl2anc 691 |
. . 3
⊢ (𝜑 → 𝑌 ∈ Ring) |
10 | 5, 9 | jca 553 |
. 2
⊢ (𝜑 → (𝑍 ∈ Ring ∧ 𝑌 ∈ Ring)) |
11 | | pwsco1rhm.c |
. . . . 5
⊢ 𝐶 = (Base‘𝑍) |
12 | | ringmnd 18379 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
13 | 1, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Mnd) |
14 | | pwsco1rhm.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
15 | 7, 3, 11, 13, 6, 2, 14 | pwsco1mhm 17193 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 MndHom 𝑌)) |
16 | | ringgrp 18375 |
. . . . . 6
⊢ (𝑍 ∈ Ring → 𝑍 ∈ Grp) |
17 | 5, 16 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ Grp) |
18 | | ringgrp 18375 |
. . . . . 6
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) |
19 | 9, 18 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ Grp) |
20 | | ghmmhmb 17494 |
. . . . 5
⊢ ((𝑍 ∈ Grp ∧ 𝑌 ∈ Grp) → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌)) |
21 | 17, 19, 20 | syl2anc 691 |
. . . 4
⊢ (𝜑 → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌)) |
22 | 15, 21 | eleqtrrd 2691 |
. . 3
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 GrpHom 𝑌)) |
23 | | eqid 2610 |
. . . . 5
⊢
((mulGrp‘𝑅)
↑s 𝐴) = ((mulGrp‘𝑅) ↑s 𝐴) |
24 | | eqid 2610 |
. . . . 5
⊢
((mulGrp‘𝑅)
↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵) |
25 | | eqid 2610 |
. . . . 5
⊢
(Base‘((mulGrp‘𝑅) ↑s 𝐵)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐵)) |
26 | | eqid 2610 |
. . . . . . 7
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
27 | 26 | ringmgp 18376 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
28 | 1, 27 | syl 17 |
. . . . 5
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
29 | 23, 24, 25, 28, 6, 2, 14 | pwsco1mhm 17193 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s
𝐵)) ↦ (𝑔 ∘ 𝐹)) ∈ (((mulGrp‘𝑅) ↑s 𝐵) MndHom ((mulGrp‘𝑅) ↑s
𝐴))) |
30 | | eqid 2610 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
31 | 3, 30 | pwsbas 15970 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊) → ((Base‘𝑅) ↑𝑚 𝐵) = (Base‘𝑍)) |
32 | 13, 2, 31 | syl2anc 691 |
. . . . . . 7
⊢ (𝜑 → ((Base‘𝑅) ↑𝑚
𝐵) = (Base‘𝑍)) |
33 | 32, 11 | syl6eqr 2662 |
. . . . . 6
⊢ (𝜑 → ((Base‘𝑅) ↑𝑚
𝐵) = 𝐶) |
34 | 26, 30 | mgpbas 18318 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅)) |
35 | 24, 34 | pwsbas 15970 |
. . . . . . 7
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝐵 ∈
𝑊) →
((Base‘𝑅)
↑𝑚 𝐵) = (Base‘((mulGrp‘𝑅) ↑s
𝐵))) |
36 | 28, 2, 35 | syl2anc 691 |
. . . . . 6
⊢ (𝜑 → ((Base‘𝑅) ↑𝑚
𝐵) =
(Base‘((mulGrp‘𝑅) ↑s 𝐵))) |
37 | 33, 36 | eqtr3d 2646 |
. . . . 5
⊢ (𝜑 → 𝐶 = (Base‘((mulGrp‘𝑅) ↑s
𝐵))) |
38 | 37 | mpteq1d 4666 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) = (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s
𝐵)) ↦ (𝑔 ∘ 𝐹))) |
39 | | eqidd 2611 |
. . . . 5
⊢ (𝜑 →
(Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍))) |
40 | | eqidd 2611 |
. . . . 5
⊢ (𝜑 →
(Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))) |
41 | | eqid 2610 |
. . . . . . . 8
⊢
(mulGrp‘𝑍) =
(mulGrp‘𝑍) |
42 | | eqid 2610 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍)) |
43 | | eqid 2610 |
. . . . . . . 8
⊢
(+g‘(mulGrp‘𝑍)) =
(+g‘(mulGrp‘𝑍)) |
44 | | eqid 2610 |
. . . . . . . 8
⊢
(+g‘((mulGrp‘𝑅) ↑s 𝐵)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵)) |
45 | 3, 26, 24, 41, 42, 25, 43, 44 | pwsmgp 18441 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑊) → ((Base‘(mulGrp‘𝑍)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧
(+g‘(mulGrp‘𝑍)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵)))) |
46 | 1, 2, 45 | syl2anc 691 |
. . . . . 6
⊢ (𝜑 →
((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s
𝐵)) ∧
(+g‘(mulGrp‘𝑍)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵)))) |
47 | 46 | simpld 474 |
. . . . 5
⊢ (𝜑 →
(Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s
𝐵))) |
48 | | eqid 2610 |
. . . . . . . 8
⊢
(mulGrp‘𝑌) =
(mulGrp‘𝑌) |
49 | | eqid 2610 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)) |
50 | | eqid 2610 |
. . . . . . . 8
⊢
(Base‘((mulGrp‘𝑅) ↑s 𝐴)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐴)) |
51 | | eqid 2610 |
. . . . . . . 8
⊢
(+g‘(mulGrp‘𝑌)) =
(+g‘(mulGrp‘𝑌)) |
52 | | eqid 2610 |
. . . . . . . 8
⊢
(+g‘((mulGrp‘𝑅) ↑s 𝐴)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐴)) |
53 | 7, 26, 23, 48, 49, 50, 51, 52 | pwsmgp 18441 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉) → ((Base‘(mulGrp‘𝑌)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧
(+g‘(mulGrp‘𝑌)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐴)))) |
54 | 1, 6, 53 | syl2anc 691 |
. . . . . 6
⊢ (𝜑 →
((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s
𝐴)) ∧
(+g‘(mulGrp‘𝑌)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐴)))) |
55 | 54 | simpld 474 |
. . . . 5
⊢ (𝜑 →
(Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s
𝐴))) |
56 | 46 | simprd 478 |
. . . . . 6
⊢ (𝜑 →
(+g‘(mulGrp‘𝑍)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵))) |
57 | 56 | oveqdr 6573 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑍)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑍)))) → (𝑥(+g‘(mulGrp‘𝑍))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s
𝐵))𝑦)) |
58 | 54 | simprd 478 |
. . . . . 6
⊢ (𝜑 →
(+g‘(mulGrp‘𝑌)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐴))) |
59 | 58 | oveqdr 6573 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s
𝐴))𝑦)) |
60 | 39, 40, 47, 55, 57, 59 | mhmpropd 17164 |
. . . 4
⊢ (𝜑 → ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)) = (((mulGrp‘𝑅) ↑s
𝐵) MndHom
((mulGrp‘𝑅)
↑s 𝐴))) |
61 | 29, 38, 60 | 3eltr4d 2703 |
. . 3
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌))) |
62 | 22, 61 | jca 553 |
. 2
⊢ (𝜑 → ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)))) |
63 | 41, 48 | isrhm 18544 |
. 2
⊢ ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 RingHom 𝑌) ↔ ((𝑍 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌))))) |
64 | 10, 62, 63 | sylanbrc 695 |
1
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 RingHom 𝑌)) |