MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco1rhm Structured version   Visualization version   GIF version

Theorem pwsco1rhm 18561
Description: Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco1rhm.y 𝑌 = (𝑅s 𝐴)
pwsco1rhm.z 𝑍 = (𝑅s 𝐵)
pwsco1rhm.c 𝐶 = (Base‘𝑍)
pwsco1rhm.r (𝜑𝑅 ∈ Ring)
pwsco1rhm.a (𝜑𝐴𝑉)
pwsco1rhm.b (𝜑𝐵𝑊)
pwsco1rhm.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
pwsco1rhm (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌))
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔   𝜑,𝑔   𝑅,𝑔   𝑔,𝑌   𝐶,𝑔   𝑔,𝐹   𝑔,𝑍
Allowed substitution hints:   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem pwsco1rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco1rhm.r . . . 4 (𝜑𝑅 ∈ Ring)
2 pwsco1rhm.b . . . 4 (𝜑𝐵𝑊)
3 pwsco1rhm.z . . . . 5 𝑍 = (𝑅s 𝐵)
43pwsring 18438 . . . 4 ((𝑅 ∈ Ring ∧ 𝐵𝑊) → 𝑍 ∈ Ring)
51, 2, 4syl2anc 691 . . 3 (𝜑𝑍 ∈ Ring)
6 pwsco1rhm.a . . . 4 (𝜑𝐴𝑉)
7 pwsco1rhm.y . . . . 5 𝑌 = (𝑅s 𝐴)
87pwsring 18438 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → 𝑌 ∈ Ring)
91, 6, 8syl2anc 691 . . 3 (𝜑𝑌 ∈ Ring)
105, 9jca 553 . 2 (𝜑 → (𝑍 ∈ Ring ∧ 𝑌 ∈ Ring))
11 pwsco1rhm.c . . . . 5 𝐶 = (Base‘𝑍)
12 ringmnd 18379 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
131, 12syl 17 . . . . 5 (𝜑𝑅 ∈ Mnd)
14 pwsco1rhm.f . . . . 5 (𝜑𝐹:𝐴𝐵)
157, 3, 11, 13, 6, 2, 14pwsco1mhm 17193 . . . 4 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌))
16 ringgrp 18375 . . . . . 6 (𝑍 ∈ Ring → 𝑍 ∈ Grp)
175, 16syl 17 . . . . 5 (𝜑𝑍 ∈ Grp)
18 ringgrp 18375 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
199, 18syl 17 . . . . 5 (𝜑𝑌 ∈ Grp)
20 ghmmhmb 17494 . . . . 5 ((𝑍 ∈ Grp ∧ 𝑌 ∈ Grp) → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌))
2117, 19, 20syl2anc 691 . . . 4 (𝜑 → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌))
2215, 21eleqtrrd 2691 . . 3 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌))
23 eqid 2610 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐴) = ((mulGrp‘𝑅) ↑s 𝐴)
24 eqid 2610 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵)
25 eqid 2610 . . . . 5 (Base‘((mulGrp‘𝑅) ↑s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵))
26 eqid 2610 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2726ringmgp 18376 . . . . . 6 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
281, 27syl 17 . . . . 5 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
2923, 24, 25, 28, 6, 2, 14pwsco1mhm 17193 . . . 4 (𝜑 → (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ↦ (𝑔𝐹)) ∈ (((mulGrp‘𝑅) ↑s 𝐵) MndHom ((mulGrp‘𝑅) ↑s 𝐴)))
30 eqid 2610 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
313, 30pwsbas 15970 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → ((Base‘𝑅) ↑𝑚 𝐵) = (Base‘𝑍))
3213, 2, 31syl2anc 691 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑𝑚 𝐵) = (Base‘𝑍))
3332, 11syl6eqr 2662 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑𝑚 𝐵) = 𝐶)
3426, 30mgpbas 18318 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
3524, 34pwsbas 15970 . . . . . . 7 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐵𝑊) → ((Base‘𝑅) ↑𝑚 𝐵) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3628, 2, 35syl2anc 691 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑𝑚 𝐵) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3733, 36eqtr3d 2646 . . . . 5 (𝜑𝐶 = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3837mpteq1d 4666 . . . 4 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) = (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ↦ (𝑔𝐹)))
39 eqidd 2611 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍)))
40 eqidd 2611 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
41 eqid 2610 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
42 eqid 2610 . . . . . . . 8 (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍))
43 eqid 2610 . . . . . . . 8 (+g‘(mulGrp‘𝑍)) = (+g‘(mulGrp‘𝑍))
44 eqid 2610 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐵)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))
453, 26, 24, 41, 42, 25, 43, 44pwsmgp 18441 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐵𝑊) → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
461, 2, 45syl2anc 691 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
4746simpld 474 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
48 eqid 2610 . . . . . . . 8 (mulGrp‘𝑌) = (mulGrp‘𝑌)
49 eqid 2610 . . . . . . . 8 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
50 eqid 2610 . . . . . . . 8 (Base‘((mulGrp‘𝑅) ↑s 𝐴)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴))
51 eqid 2610 . . . . . . . 8 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
52 eqid 2610 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐴)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))
537, 26, 23, 48, 49, 50, 51, 52pwsmgp 18441 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
541, 6, 53syl2anc 691 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
5554simpld 474 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
5646simprd 478 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵)))
5756oveqdr 6573 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑍)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑍)))) → (𝑥(+g‘(mulGrp‘𝑍))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐵))𝑦))
5854simprd 478 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴)))
5958oveqdr 6573 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐴))𝑦))
6039, 40, 47, 55, 57, 59mhmpropd 17164 . . . 4 (𝜑 → ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)) = (((mulGrp‘𝑅) ↑s 𝐵) MndHom ((mulGrp‘𝑅) ↑s 𝐴)))
6129, 38, 603eltr4d 2703 . . 3 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)))
6222, 61jca 553 . 2 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌))))
6341, 48isrhm 18544 . 2 ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌) ↔ ((𝑍 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)))))
6410, 62, 63sylanbrc 695 1 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cmpt 4643  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Basecbs 15695  +gcplusg 15768  s cpws 15930  Mndcmnd 17117   MndHom cmhm 17156  Grpcgrp 17245   GrpHom cghm 17480  mulGrpcmgp 18312  Ringcrg 18370   RingHom crh 18535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-ghm 17481  df-mgp 18313  df-ur 18325  df-ring 18372  df-rnghom 18538
This theorem is referenced by:  evls1rhmlem  19507
  Copyright terms: Public domain W3C validator