MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqwrds3 Structured version   Visualization version   GIF version

Theorem eqwrds3 13552
Description: A word is equal with a length 3 string iff it has length 3 and the same symbol at each position. (Contributed by AV, 12-May-2021.)
Assertion
Ref Expression
eqwrds3 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶))))

Proof of Theorem eqwrds3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 s3cl 13474 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉)
2 eqwrd 13201 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))))
31, 2sylan2 490 . 2 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))))
4 s3len 13489 . . . . 5 (#‘⟨“𝐴𝐵𝐶”⟩) = 3
54eqeq2i 2622 . . . 4 ((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ↔ (#‘𝑊) = 3)
65a1i 11 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ↔ (#‘𝑊) = 3))
76anbi1d 737 . 2 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖)) ↔ ((#‘𝑊) = 3 ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))))
8 oveq2 6557 . . . . . 6 ((#‘𝑊) = 3 → (0..^(#‘𝑊)) = (0..^3))
9 fzo0to3tp 12421 . . . . . 6 (0..^3) = {0, 1, 2}
108, 9syl6eq 2660 . . . . 5 ((#‘𝑊) = 3 → (0..^(#‘𝑊)) = {0, 1, 2})
1110raleqdv 3121 . . . 4 ((#‘𝑊) = 3 → (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ∀𝑖 ∈ {0, 1, 2} (𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖)))
12 fveq2 6103 . . . . . . . 8 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
13 fveq2 6103 . . . . . . . 8 (𝑖 = 0 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘0))
1412, 13eqeq12d 2625 . . . . . . 7 (𝑖 = 0 → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘0) = (⟨“𝐴𝐵𝐶”⟩‘0)))
15 s3fv0 13486 . . . . . . . . 9 (𝐴𝑉 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
16153ad2ant1 1075 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
1716eqeq2d 2620 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑊‘0) = (⟨“𝐴𝐵𝐶”⟩‘0) ↔ (𝑊‘0) = 𝐴))
1814, 17sylan9bbr 733 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑖 = 0) → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘0) = 𝐴))
19 fveq2 6103 . . . . . . . 8 (𝑖 = 1 → (𝑊𝑖) = (𝑊‘1))
20 fveq2 6103 . . . . . . . 8 (𝑖 = 1 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘1))
2119, 20eqeq12d 2625 . . . . . . 7 (𝑖 = 1 → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘1) = (⟨“𝐴𝐵𝐶”⟩‘1)))
22 s3fv1 13487 . . . . . . . . 9 (𝐵𝑉 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
2322eqeq2d 2620 . . . . . . . 8 (𝐵𝑉 → ((𝑊‘1) = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ (𝑊‘1) = 𝐵))
24233ad2ant2 1076 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑊‘1) = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ (𝑊‘1) = 𝐵))
2521, 24sylan9bbr 733 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑖 = 1) → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘1) = 𝐵))
26 fveq2 6103 . . . . . . . 8 (𝑖 = 2 → (𝑊𝑖) = (𝑊‘2))
27 fveq2 6103 . . . . . . . 8 (𝑖 = 2 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘2))
2826, 27eqeq12d 2625 . . . . . . 7 (𝑖 = 2 → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘2) = (⟨“𝐴𝐵𝐶”⟩‘2)))
29 s3fv2 13488 . . . . . . . . 9 (𝐶𝑉 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3029eqeq2d 2620 . . . . . . . 8 (𝐶𝑉 → ((𝑊‘2) = (⟨“𝐴𝐵𝐶”⟩‘2) ↔ (𝑊‘2) = 𝐶))
31303ad2ant3 1077 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑊‘2) = (⟨“𝐴𝐵𝐶”⟩‘2) ↔ (𝑊‘2) = 𝐶))
3228, 31sylan9bbr 733 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑖 = 2) → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘2) = 𝐶))
33 0zd 11266 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 0 ∈ ℤ)
34 1zzd 11285 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 1 ∈ ℤ)
35 2z 11286 . . . . . . 7 2 ∈ ℤ
3635a1i 11 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 2 ∈ ℤ)
3718, 25, 32, 33, 34, 36raltpd 4258 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (∀𝑖 ∈ {0, 1, 2} (𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶)))
3837adantl 481 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∀𝑖 ∈ {0, 1, 2} (𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶)))
3911, 38sylan9bbr 733 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (#‘𝑊) = 3) → (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶)))
4039pm5.32da 671 . 2 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((#‘𝑊) = 3 ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖)) ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶))))
413, 7, 403bitrd 293 1 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {ctp 4129  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  2c2 10947  3c3 10948  cz 11254  ..^cfzo 12334  #chash 12979  Word cword 13146  ⟨“cs3 13438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445
This theorem is referenced by:  wrdl3s3  13553  s3sndisj  13554  s3iunsndisj  13555  elwwlks2ons3  41159  umgrwwlks2on  41161  elwwlks2  41170  elwspths2spth  41171
  Copyright terms: Public domain W3C validator