Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elwspths2spth Structured version   Visualization version   GIF version

Theorem elwspths2spth 41171
 Description: A simple path of length 2 between two vertices as length 3 string in a pseudograph. (Contributed by Alexander van der Vekens, 28-Feb-2018.) (Revised by AV, 18-May-2021.)
Hypothesis
Ref Expression
elwwlks2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwspths2spth (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
Distinct variable groups:   𝐺,𝑎,𝑏,𝑐,𝑓,𝑝   𝑉,𝑎,𝑏,𝑐,𝑓,𝑝   𝑊,𝑎,𝑏,𝑐,𝑓,𝑝

Proof of Theorem elwspths2spth
StepHypRef Expression
1 2nn0 11186 . . 3 2 ∈ ℕ0
2 elwwlks2.v . . . 4 𝑉 = (Vtx‘𝐺)
32wspthsnwspthsnon 41122 . . 3 ((2 ∈ ℕ0𝐺 ∈ UPGraph ) → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))
41, 3mpan 702 . 2 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))
52elwspths2on 41163 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉𝑐𝑉) → (𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))))
653expb 1258 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑎𝑉𝑐𝑉)) → (𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))))
762rexbidva 3038 . 2 (𝐺 ∈ UPGraph → (∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑎𝑉𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐))))
8 rexcom 3080 . . . 4 (∃𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)))
9 simpr 476 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → 𝑎𝑉)
10 simpr 476 . . . . . . . . . 10 ((𝑏𝑉𝑐𝑉) → 𝑐𝑉)
119, 10anim12i 588 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉𝑐𝑉))
122wspthnon 41054 . . . . . . . . 9 ((𝑎𝑉𝑐𝑉) → (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩)))
1311, 12syl 17 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩)))
1413adantr 480 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩)))
15 ancom 465 . . . . . . . . 9 ((⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩) ↔ (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
16 19.41v 1901 . . . . . . . . 9 (∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ (∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
1715, 16bitr4i 266 . . . . . . . 8 ((⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩) ↔ ∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
18 vex 3176 . . . . . . . . . . . . . 14 𝑓 ∈ V
19 s3cli 13476 . . . . . . . . . . . . . 14 ⟨“𝑎𝑏𝑐”⟩ ∈ Word V
2018, 19pm3.2i 470 . . . . . . . . . . . . 13 (𝑓 ∈ V ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)
212isspthonpth-av 40955 . . . . . . . . . . . . 13 (((𝑎𝑉𝑐𝑉) ∧ (𝑓 ∈ V ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ↔ (𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐)))
2211, 20, 21sylancl 693 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ↔ (𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐)))
232wwlknon 41053 . . . . . . . . . . . . . 14 ((𝑎𝑉𝑐𝑉) → (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalkSN 𝐺) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
2411, 23syl 17 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalkSN 𝐺) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
25 iswwlksn 41041 . . . . . . . . . . . . . . . 16 (2 ∈ ℕ0 → (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalkSN 𝐺) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1))))
261, 25ax-mp 5 . . . . . . . . . . . . . . 15 (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalkSN 𝐺) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)))
2726a1i 11 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalkSN 𝐺) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1))))
28273anbi1d 1395 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalkSN 𝐺) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) ↔ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
2924, 28bitrd 267 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
3022, 29anbi12d 743 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
3130adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
3219a1i 11 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)
33 simprl1 1099 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → 𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩)
34 sPthis1wlk 40934 . . . . . . . . . . . . . . . . . . . 20 (𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ → 𝑓(1Walks‘𝐺)⟨“𝑎𝑏𝑐”⟩)
35 1wlklenvm1 40826 . . . . . . . . . . . . . . . . . . . 20 (𝑓(1Walks‘𝐺)⟨“𝑎𝑏𝑐”⟩ → (#‘𝑓) = ((#‘⟨“𝑎𝑏𝑐”⟩) − 1))
36 simpl 472 . . . . . . . . . . . . . . . . . . . . . 22 (((#‘𝑓) = ((#‘⟨“𝑎𝑏𝑐”⟩) − 1) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (#‘𝑓) = ((#‘⟨“𝑎𝑏𝑐”⟩) − 1))
37 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1) → ((#‘⟨“𝑎𝑏𝑐”⟩) − 1) = ((2 + 1) − 1))
38 2cn 10968 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℂ
39 pncan1 10333 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2 ∈ ℂ → ((2 + 1) − 1) = 2)
4038, 39ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 + 1) − 1) = 2
4137, 40syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1) → ((#‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
4241adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) → ((#‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
43423ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . . . 23 (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → ((#‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
4443adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((#‘𝑓) = ((#‘⟨“𝑎𝑏𝑐”⟩) − 1) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → ((#‘⟨“𝑎𝑏𝑐”⟩) − 1) = 2)
4536, 44eqtrd 2644 . . . . . . . . . . . . . . . . . . . . 21 (((#‘𝑓) = ((#‘⟨“𝑎𝑏𝑐”⟩) − 1) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (#‘𝑓) = 2)
4645ex 449 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑓) = ((#‘⟨“𝑎𝑏𝑐”⟩) − 1) → (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → (#‘𝑓) = 2))
4734, 35, 463syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ → (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → (#‘𝑓) = 2))
48473ad2ant1 1075 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) → (((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐) → (#‘𝑓) = 2))
4948imp 444 . . . . . . . . . . . . . . . . 17 (((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (#‘𝑓) = 2)
5049adantl 481 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (#‘𝑓) = 2)
51 vex 3176 . . . . . . . . . . . . . . . . . . . 20 𝑎 ∈ V
52 s3fv0 13486 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎)
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎
5453eqcomi 2619 . . . . . . . . . . . . . . . . . 18 𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0)
55 vex 3176 . . . . . . . . . . . . . . . . . . . 20 𝑏 ∈ V
56 s3fv1 13487 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘1) = 𝑏)
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (⟨“𝑎𝑏𝑐”⟩‘1) = 𝑏
5857eqcomi 2619 . . . . . . . . . . . . . . . . . 18 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1)
59 vex 3176 . . . . . . . . . . . . . . . . . . . 20 𝑐 ∈ V
60 s3fv2 13488 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)
6159, 60ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐
6261eqcomi 2619 . . . . . . . . . . . . . . . . . 18 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)
6354, 58, 623pm3.2i 1232 . . . . . . . . . . . . . . . . 17 (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))
6463a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))
6533, 50, 643jca 1235 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (#‘𝑓) = 2 ∧ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))))
66 breq2 4587 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑓(SPathS‘𝐺)𝑝𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩))
67 fveq1 6102 . . . . . . . . . . . . . . . . . . 19 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘0) = (⟨“𝑎𝑏𝑐”⟩‘0))
6867eqeq2d 2620 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑎 = (𝑝‘0) ↔ 𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0)))
69 fveq1 6102 . . . . . . . . . . . . . . . . . . 19 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘1) = (⟨“𝑎𝑏𝑐”⟩‘1))
7069eqeq2d 2620 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑏 = (𝑝‘1) ↔ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1)))
71 fveq1 6102 . . . . . . . . . . . . . . . . . . 19 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘2) = (⟨“𝑎𝑏𝑐”⟩‘2))
7271eqeq2d 2620 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑐 = (𝑝‘2) ↔ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))
7368, 70, 723anbi123d 1391 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) ↔ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))))
7466, 733anbi13d 1393 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → ((𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) ↔ (𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (#‘𝑓) = 2 ∧ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))))
7574ad2antlr 759 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → ((𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) ↔ (𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (#‘𝑓) = 2 ∧ (𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0) ∧ 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1) ∧ 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2)))))
7665, 75mpbird 246 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ ((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))) → (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))
7776ex 449 . . . . . . . . . . . . 13 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
7832, 77spcimedv 3265 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) → ∃𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
79 sPthis1wlk 40934 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(SPathS‘𝐺)𝑝𝑓(1Walks‘𝐺)𝑝)
80 1wlklenvp1 40823 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(1Walks‘𝐺)𝑝 → (#‘𝑝) = ((#‘𝑓) + 1))
81 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑓) = 2 → ((#‘𝑓) + 1) = (2 + 1))
82 2p1e3 11028 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 + 1) = 3
8381, 82syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑓) = 2 → ((#‘𝑓) + 1) = 3)
8483eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝑓) = 2 → ((#‘𝑝) = ((#‘𝑓) + 1) ↔ (#‘𝑝) = 3))
8584biimpcd 238 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑝) = ((#‘𝑓) + 1) → ((#‘𝑓) = 2 → (#‘𝑝) = 3))
8679, 80, 853syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑓(SPathS‘𝐺)𝑝 → ((#‘𝑓) = 2 → (#‘𝑝) = 3))
8786imp 444 . . . . . . . . . . . . . . . . . . 19 ((𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2) → (#‘𝑝) = 3)
88873adant3 1074 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (#‘𝑝) = 3)
8988adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (#‘𝑝) = 3)
90 eqcom 2617 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑝‘0) ↔ (𝑝‘0) = 𝑎)
91 eqcom 2617 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑝‘1) ↔ (𝑝‘1) = 𝑏)
92 eqcom 2617 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑝‘2) ↔ (𝑝‘2) = 𝑐)
9390, 91, 923anbi123i 1244 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
9493biimpi 205 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
95943ad2ant3 1077 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
9695adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
9789, 96jca 553 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((#‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)))
9821wlkpwrd 40822 . . . . . . . . . . . . . . . . . . 19 (𝑓(1Walks‘𝐺)𝑝𝑝 ∈ Word 𝑉)
9979, 98syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓(SPathS‘𝐺)𝑝𝑝 ∈ Word 𝑉)
100993ad2ant1 1075 . . . . . . . . . . . . . . . . 17 ((𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → 𝑝 ∈ Word 𝑉)
1019anim1i 590 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
102 3anass 1035 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
103101, 102sylibr 223 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉𝑏𝑉𝑐𝑉))
104 eqwrds3 13552 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((#‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))))
105100, 103, 104syl2anr 494 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((#‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))))
10697, 105mpbird 246 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → 𝑝 = ⟨“𝑎𝑏𝑐”⟩)
10766biimpcd 238 . . . . . . . . . . . . . . . . . . . 20 (𝑓(SPathS‘𝐺)𝑝 → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩))
1081073ad2ant1 1075 . . . . . . . . . . . . . . . . . . 19 ((𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩))
109108adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩))
110109imp 444 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩)
11153a1i 11 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎)
112 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑓) = 2 → (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = (⟨“𝑎𝑏𝑐”⟩‘2))
113112, 61syl6eq 2660 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑓) = 2 → (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐)
1141133ad2ant2 1076 . . . . . . . . . . . . . . . . . 18 ((𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐)
115114ad2antlr 759 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐)
116110, 111, 1153jca 1235 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐))
117 1wlkiswwlks1 41064 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺 ∈ UPGraph → (𝑓(1Walks‘𝐺)𝑝𝑝 ∈ (WWalkS‘𝐺)))
118117adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (𝑓(1Walks‘𝐺)𝑝𝑝 ∈ (WWalkS‘𝐺)))
119118adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑓(1Walks‘𝐺)𝑝𝑝 ∈ (WWalkS‘𝐺)))
12079, 119syl5com 31 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓(SPathS‘𝐺)𝑝 → (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → 𝑝 ∈ (WWalkS‘𝐺)))
1211203ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → 𝑝 ∈ (WWalkS‘𝐺)))
122121impcom 445 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → 𝑝 ∈ (WWalkS‘𝐺))
123122adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑝 ∈ (WWalkS‘𝐺))
124 eleq1 2676 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝 ∈ (WWalkS‘𝐺) ↔ ⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺)))
125124bicomd 212 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ↔ 𝑝 ∈ (WWalkS‘𝐺)))
126125adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ↔ 𝑝 ∈ (WWalkS‘𝐺)))
127123, 126mpbird 246 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺))
128 s3len 13489 . . . . . . . . . . . . . . . . . . 19 (#‘⟨“𝑎𝑏𝑐”⟩) = 3
129 df-3 10957 . . . . . . . . . . . . . . . . . . 19 3 = (2 + 1)
130128, 129eqtri 2632 . . . . . . . . . . . . . . . . . 18 (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)
131127, 130jctir 559 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)))
13261a1i 11 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)
133131, 111, 1323jca 1235 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))
134116, 133jca 553 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
135106, 134mpdan 699 . . . . . . . . . . . . . 14 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))) → ((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)))
136135ex 449 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
137136exlimdv 1848 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (∃𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐))))
13878, 137impbid 201 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) ↔ ∃𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
139138adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (((𝑓(SPathS‘𝐺)⟨“𝑎𝑏𝑐”⟩ ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘(#‘𝑓)) = 𝑐) ∧ ((⟨“𝑎𝑏𝑐”⟩ ∈ (WWalkS‘𝐺) ∧ (#‘⟨“𝑎𝑏𝑐”⟩) = (2 + 1)) ∧ (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎 ∧ (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)) ↔ ∃𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
14031, 139bitrd 267 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ∃𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
141140exbidv 1837 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (∃𝑓(𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)) ↔ ∃𝑓𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
14217, 141syl5bb 271 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑐)⟨“𝑎𝑏𝑐”⟩) ↔ ∃𝑓𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
14314, 142bitrd 267 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐) ↔ ∃𝑓𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
144143pm5.32da 671 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
1451442rexbidva 3038 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
1468, 145syl5bb 271 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (∃𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
147146rexbidva 3031 . 2 (𝐺 ∈ UPGraph → (∃𝑎𝑉𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ⟨“𝑎𝑏𝑐”⟩ ∈ (𝑎(2 WSPathsNOn 𝐺)𝑐)) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
1484, 7, 1473bitrd 293 1 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPathS‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ∃wrex 2897  Vcvv 3173   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   − cmin 10145  2c2 10947  3c3 10948  ℕ0cn0 11169  #chash 12979  Word cword 13146  ⟨“cs3 13438  Vtxcvtx 25673   UPGraph cupgr 25747  1Walksc1wlks 40796  SPathScspths 40920  SPathsOncspthson 40922  WWalkScwwlks 41028   WWalkSN cwwlksn 41029   WWalksNOn cwwlksnon 41030   WSPathsN cwwspthsn 41031   WSPathsNOn cwwspthsnon 41032 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-ac 8822  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-uhgr 25724  df-upgr 25749  df-edga 25793  df-1wlks 40800  df-wlks 40801  df-wlkson 40802  df-trls 40901  df-trlson 40902  df-pths 40923  df-spths 40924  df-spthson 40926  df-wwlks 41033  df-wwlksn 41034  df-wwlksnon 41035  df-wspthsn 41036  df-wspthsnon 41037 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator