Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version |
Description: The epsilon relation and the membership relation are the same. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
epel | ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3176 | . 2 ⊢ 𝑦 ∈ V | |
2 | 1 | epelc 4951 | 1 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 class class class wbr 4583 E cep 4947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-eprel 4949 |
This theorem is referenced by: epse 5021 dfepfr 5023 epfrc 5024 wecmpep 5030 wetrep 5031 ordon 6874 smoiso 7346 smoiso2 7353 ordunifi 8095 ordiso2 8303 ordtypelem8 8313 wofib 8333 dford2 8400 noinfep 8440 oemapso 8462 wemapwe 8477 alephiso 8804 cflim2 8968 fin23lem27 9033 om2uzisoi 12615 bnj219 30055 efrunt 30844 dftr6 30893 dffr5 30896 elpotr 30930 dfon2lem9 30940 dfon2 30941 domep 30942 brsset 31166 dfon3 31169 brbigcup 31175 brapply 31215 brcup 31216 brcap 31217 dfint3 31229 |
Copyright terms: Public domain | W3C validator |