MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem27 Structured version   Visualization version   GIF version

Theorem fin23lem27 9033
Description: The mapping constructed in fin23lem22 9032 is in fact an isomorphism. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem22.b 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
Assertion
Ref Expression
fin23lem27 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶 Isom E , E (ω, 𝑆))
Distinct variable group:   𝑖,𝑗,𝑆
Allowed substitution hints:   𝐶(𝑖,𝑗)

Proof of Theorem fin23lem27
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 6966 . . . 4 Ord ω
2 ordwe 5653 . . . 4 (Ord ω → E We ω)
3 weso 5029 . . . 4 ( E We ω → E Or ω)
41, 2, 3mp2b 10 . . 3 E Or ω
54a1i 11 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → E Or ω)
6 sopo 4976 . . . . 5 ( E Or ω → E Po ω)
74, 6ax-mp 5 . . . 4 E Po ω
8 poss 4961 . . . 4 (𝑆 ⊆ ω → ( E Po ω → E Po 𝑆))
97, 8mpi 20 . . 3 (𝑆 ⊆ ω → E Po 𝑆)
109adantr 480 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → E Po 𝑆)
11 fin23lem22.b . . . 4 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
1211fin23lem22 9032 . . 3 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
13 f1ofo 6057 . . 3 (𝐶:ω–1-1-onto𝑆𝐶:ω–onto𝑆)
1412, 13syl 17 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–onto𝑆)
15 nnsdomel 8699 . . . . . . . 8 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎𝑏𝑎𝑏))
1615adantl 481 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏𝑎𝑏))
1716biimpd 218 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏𝑎𝑏))
18 fin23lem23 9031 . . . . . . . . . . . . 13 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑎)
1918adantrr 749 . . . . . . . . . . . 12 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑎)
20 ineq1 3769 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝑗𝑆) = (𝑖𝑆))
2120breq1d 4593 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → ((𝑗𝑆) ≈ 𝑎 ↔ (𝑖𝑆) ≈ 𝑎))
2221cbvreuv 3149 . . . . . . . . . . . 12 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑎 ↔ ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑎)
2319, 22sylib 207 . . . . . . . . . . 11 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑎)
24 nfv 1830 . . . . . . . . . . . 12 𝑖((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎
2521cbvriotav 6522 . . . . . . . . . . . 12 (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) = (𝑖𝑆 (𝑖𝑆) ≈ 𝑎)
26 ineq1 3769 . . . . . . . . . . . . 13 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) → (𝑖𝑆) = ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆))
2726breq1d 4593 . . . . . . . . . . . 12 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) → ((𝑖𝑆) ≈ 𝑎 ↔ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎))
2824, 25, 27riotaprop 6534 . . . . . . . . . . 11 (∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑎 → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎))
2923, 28syl 17 . . . . . . . . . 10 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎))
3029simprd 478 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎)
3130adantrr 749 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎)
32 simprr 792 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → 𝑎𝑏)
33 fin23lem23 9031 . . . . . . . . . . . . . . 15 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑏)
3433adantrl 748 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑏)
3520breq1d 4593 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → ((𝑗𝑆) ≈ 𝑏 ↔ (𝑖𝑆) ≈ 𝑏))
3635cbvreuv 3149 . . . . . . . . . . . . . 14 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑏 ↔ ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑏)
3734, 36sylib 207 . . . . . . . . . . . . 13 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑏)
38 nfv 1830 . . . . . . . . . . . . . 14 𝑖((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏
3935cbvriotav 6522 . . . . . . . . . . . . . 14 (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) = (𝑖𝑆 (𝑖𝑆) ≈ 𝑏)
40 ineq1 3769 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) → (𝑖𝑆) = ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
4140breq1d 4593 . . . . . . . . . . . . . 14 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) → ((𝑖𝑆) ≈ 𝑏 ↔ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏))
4238, 39, 41riotaprop 6534 . . . . . . . . . . . . 13 (∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑏 → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏))
4337, 42syl 17 . . . . . . . . . . . 12 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏))
4443simprd 478 . . . . . . . . . . 11 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏)
4544ensymd 7893 . . . . . . . . . 10 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑏 ≈ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
4645adantrr 749 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → 𝑏 ≈ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
47 sdomentr 7979 . . . . . . . . 9 ((𝑎𝑏𝑏 ≈ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)) → 𝑎 ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
4832, 46, 47syl2anc 691 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → 𝑎 ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
49 ensdomtr 7981 . . . . . . . 8 ((((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎𝑎 ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
5031, 48, 49syl2anc 691 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
5150expr 641 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏 → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)))
52 simpll 786 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑆 ⊆ ω)
53 omsson 6961 . . . . . . . . 9 ω ⊆ On
5452, 53syl6ss 3580 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑆 ⊆ On)
5529simpld 474 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆)
5654, 55sseldd 3569 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ On)
5743simpld 474 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆)
5854, 57sseldd 3569 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ On)
59 onsdominel 7994 . . . . . . . 8 (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ On ∧ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ On ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
60593expia 1259 . . . . . . 7 (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ On ∧ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ On) → (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
6156, 58, 60syl2anc 691 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
6217, 51, 613syld 58 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
63 simprl 790 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑎 ∈ ω)
64 breq2 4587 . . . . . . . . 9 (𝑖 = 𝑎 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑗𝑆) ≈ 𝑎))
6564riotabidv 6513 . . . . . . . 8 (𝑖 = 𝑎 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎))
6665, 11fvmptg 6189 . . . . . . 7 ((𝑎 ∈ ω ∧ (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆) → (𝐶𝑎) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎))
6763, 55, 66syl2anc 691 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝐶𝑎) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎))
68 simprr 792 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑏 ∈ ω)
69 breq2 4587 . . . . . . . . 9 (𝑖 = 𝑏 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑗𝑆) ≈ 𝑏))
7069riotabidv 6513 . . . . . . . 8 (𝑖 = 𝑏 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
7170, 11fvmptg 6189 . . . . . . 7 ((𝑏 ∈ ω ∧ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆) → (𝐶𝑏) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
7268, 57, 71syl2anc 691 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝐶𝑏) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
7367, 72eleq12d 2682 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝐶𝑎) ∈ (𝐶𝑏) ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
7462, 73sylibrd 248 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏 → (𝐶𝑎) ∈ (𝐶𝑏)))
75 epel 4952 . . . 4 (𝑎 E 𝑏𝑎𝑏)
76 fvex 6113 . . . . 5 (𝐶𝑏) ∈ V
7776epelc 4951 . . . 4 ((𝐶𝑎) E (𝐶𝑏) ↔ (𝐶𝑎) ∈ (𝐶𝑏))
7874, 75, 773imtr4g 284 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎 E 𝑏 → (𝐶𝑎) E (𝐶𝑏)))
7978ralrimivva 2954 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → ∀𝑎 ∈ ω ∀𝑏 ∈ ω (𝑎 E 𝑏 → (𝐶𝑎) E (𝐶𝑏)))
80 soisoi 6478 . 2 ((( E Or ω ∧ E Po 𝑆) ∧ (𝐶:ω–onto𝑆 ∧ ∀𝑎 ∈ ω ∀𝑏 ∈ ω (𝑎 E 𝑏 → (𝐶𝑎) E (𝐶𝑏)))) → 𝐶 Isom E , E (ω, 𝑆))
815, 10, 14, 79, 80syl22anc 1319 1 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶 Isom E , E (ω, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  ∃!wreu 2898  cin 3539  wss 3540   class class class wbr 4583  cmpt 4643   E cep 4947   Po wpo 4957   Or wor 4958   We wwe 4996  Ord word 5639  Oncon0 5640  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804   Isom wiso 5805  crio 6510  ωcom 6957  cen 7838  csdm 7840  Fincfn 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-om 6958  df-wrecs 7294  df-recs 7355  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator