Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzisoi Structured version   Visualization version   GIF version

Theorem om2uzisoi 12615
 Description: 𝐺 (see om2uz0i 12608) is an isomorphism from natural ordinals to upper integers. (Contributed by NM, 9-Oct-2008.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzisoi 𝐺 Isom E , < (ω, (ℤ𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem om2uzisoi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 om2uz.1 . . 3 𝐶 ∈ ℤ
2 om2uz.2 . . 3 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
31, 2om2uzf1oi 12614 . 2 𝐺:ω–1-1-onto→(ℤ𝐶)
4 epel 4952 . . . 4 (𝑦 E 𝑧𝑦𝑧)
51, 2om2uzlt2i 12612 . . . 4 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦𝑧 ↔ (𝐺𝑦) < (𝐺𝑧)))
64, 5syl5bb 271 . . 3 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 E 𝑧 ↔ (𝐺𝑦) < (𝐺𝑧)))
76rgen2a 2960 . 2 𝑦 ∈ ω ∀𝑧 ∈ ω (𝑦 E 𝑧 ↔ (𝐺𝑦) < (𝐺𝑧))
8 df-isom 5813 . 2 (𝐺 Isom E , < (ω, (ℤ𝐶)) ↔ (𝐺:ω–1-1-onto→(ℤ𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω (𝑦 E 𝑧 ↔ (𝐺𝑦) < (𝐺𝑧))))
93, 7, 8mpbir2an 957 1 𝐺 Isom E , < (ω, (ℤ𝐶))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   class class class wbr 4583   ↦ cmpt 4643   E cep 4947   ↾ cres 5040  –1-1-onto→wf1o 5803  ‘cfv 5804   Isom wiso 5805  (class class class)co 6549  ωcom 6957  reccrdg 7392  1c1 9816   + caddc 9818   < clt 9953  ℤcz 11254  ℤ≥cuz 11563 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564 This theorem is referenced by:  om2uzoi  12616  ltweuz  12622  fz1isolem  13102
 Copyright terms: Public domain W3C validator