Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem9 Structured version   Visualization version   GIF version

Theorem dfon2lem9 30940
 Description: Lemma for dfon2 30941. A class of new ordinals is well-founded by E. (Contributed by Scott Fenton, 3-Mar-2011.)
Assertion
Ref Expression
dfon2lem9 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → E Fr 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem dfon2lem9
Dummy variables 𝑧 𝑤 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3629 . . . . 5 (𝑧𝐴 → (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)))
2 dfon2lem8 30939 . . . . . . . 8 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧) ∧ 𝑧𝑧))
32simprd 478 . . . . . . 7 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → 𝑧𝑧)
4 intss1 4427 . . . . . . . . 9 (𝑡𝑧 𝑧𝑡)
52simpld 474 . . . . . . . . . 10 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧))
6 intex 4747 . . . . . . . . . . 11 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
7 dfon2lem3 30934 . . . . . . . . . . . . . . . . 17 ( 𝑧 ∈ V → (∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧) → (Tr 𝑧 ∧ ∀𝑥 𝑧 ¬ 𝑥𝑥)))
87imp 444 . . . . . . . . . . . . . . . 16 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (Tr 𝑧 ∧ ∀𝑥 𝑧 ¬ 𝑥𝑥))
98simprd 478 . . . . . . . . . . . . . . 15 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ∀𝑥 𝑧 ¬ 𝑥𝑥)
10 untelirr 30839 . . . . . . . . . . . . . . 15 (∀𝑥 𝑧 ¬ 𝑥𝑥 → ¬ 𝑧 𝑧)
119, 10syl 17 . . . . . . . . . . . . . 14 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ¬ 𝑧 𝑧)
12 eleq1 2676 . . . . . . . . . . . . . . 15 ( 𝑧 = 𝑡 → ( 𝑧 𝑧𝑡 𝑧))
1312notbid 307 . . . . . . . . . . . . . 14 ( 𝑧 = 𝑡 → (¬ 𝑧 𝑧 ↔ ¬ 𝑡 𝑧))
1411, 13syl5ibcom 234 . . . . . . . . . . . . 13 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧 = 𝑡 → ¬ 𝑡 𝑧))
1514a1dd 48 . . . . . . . . . . . 12 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧 = 𝑡 → ( 𝑧𝑡 → ¬ 𝑡 𝑧)))
168simpld 474 . . . . . . . . . . . . . . . . 17 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → Tr 𝑧)
17 trss 4689 . . . . . . . . . . . . . . . . 17 (Tr 𝑧 → (𝑡 𝑧𝑡 𝑧))
1816, 17syl 17 . . . . . . . . . . . . . . . 16 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (𝑡 𝑧𝑡 𝑧))
19 eqss 3583 . . . . . . . . . . . . . . . . 17 ( 𝑧 = 𝑡 ↔ ( 𝑧𝑡𝑡 𝑧))
2019simplbi2com 655 . . . . . . . . . . . . . . . 16 (𝑡 𝑧 → ( 𝑧𝑡 𝑧 = 𝑡))
2118, 20syl6 34 . . . . . . . . . . . . . . 15 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (𝑡 𝑧 → ( 𝑧𝑡 𝑧 = 𝑡)))
2221com23 84 . . . . . . . . . . . . . 14 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → (𝑡 𝑧 𝑧 = 𝑡)))
23 con3 148 . . . . . . . . . . . . . 14 ((𝑡 𝑧 𝑧 = 𝑡) → (¬ 𝑧 = 𝑡 → ¬ 𝑡 𝑧))
2422, 23syl6 34 . . . . . . . . . . . . 13 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → (¬ 𝑧 = 𝑡 → ¬ 𝑡 𝑧)))
2524com23 84 . . . . . . . . . . . 12 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (¬ 𝑧 = 𝑡 → ( 𝑧𝑡 → ¬ 𝑡 𝑧)))
2615, 25pm2.61d 169 . . . . . . . . . . 11 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → ¬ 𝑡 𝑧))
276, 26sylanb 488 . . . . . . . . . 10 ((𝑧 ≠ ∅ ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → ¬ 𝑡 𝑧))
285, 27syldan 486 . . . . . . . . 9 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ( 𝑧𝑡 → ¬ 𝑡 𝑧))
294, 28syl5 33 . . . . . . . 8 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (𝑡𝑧 → ¬ 𝑡 𝑧))
3029ralrimiv 2948 . . . . . . 7 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑡𝑧 ¬ 𝑡 𝑧)
31 eleq2 2677 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑡𝑤𝑡 𝑧))
3231notbid 307 . . . . . . . . 9 (𝑤 = 𝑧 → (¬ 𝑡𝑤 ↔ ¬ 𝑡 𝑧))
3332ralbidv 2969 . . . . . . . 8 (𝑤 = 𝑧 → (∀𝑡𝑧 ¬ 𝑡𝑤 ↔ ∀𝑡𝑧 ¬ 𝑡 𝑧))
3433rspcev 3282 . . . . . . 7 (( 𝑧𝑧 ∧ ∀𝑡𝑧 ¬ 𝑡 𝑧) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)
353, 30, 34syl2anc 691 . . . . . 6 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)
3635expcom 450 . . . . 5 (∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑧 ≠ ∅ → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
371, 36syl6com 36 . . . 4 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑧𝐴 → (𝑧 ≠ ∅ → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)))
3837impd 446 . . 3 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
3938alrimiv 1842 . 2 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
40 df-fr 4997 . . 3 ( E Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤))
41 epel 4952 . . . . . . . 8 (𝑡 E 𝑤𝑡𝑤)
4241notbii 309 . . . . . . 7 𝑡 E 𝑤 ↔ ¬ 𝑡𝑤)
4342ralbii 2963 . . . . . 6 (∀𝑡𝑧 ¬ 𝑡 E 𝑤 ↔ ∀𝑡𝑧 ¬ 𝑡𝑤)
4443rexbii 3023 . . . . 5 (∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤 ↔ ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)
4544imbi2i 325 . . . 4 (((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤) ↔ ((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
4645albii 1737 . . 3 (∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤) ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
4740, 46bitri 263 . 2 ( E Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
4839, 47sylibr 223 1 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → E Fr 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383  ∀wal 1473   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ⊆ wss 3540   ⊊ wpss 3541  ∅c0 3874  ∩ cint 4410   class class class wbr 4583  Tr wtr 4680   E cep 4947   Fr wfr 4994 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-fr 4997  df-suc 5646 This theorem is referenced by:  dfon2  30941
 Copyright terms: Public domain W3C validator