Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brbigcup | Structured version Visualization version GIF version |
Description: Binary relationship over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
brbigcup.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brbigcup | ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relbigcup 31174 | . . 3 ⊢ Rel Bigcup | |
2 | 1 | brrelexi 5082 | . 2 ⊢ (𝐴 Bigcup 𝐵 → 𝐴 ∈ V) |
3 | brbigcup.1 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | eleq1 2676 | . . . 4 ⊢ (∪ 𝐴 = 𝐵 → (∪ 𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
5 | 3, 4 | mpbiri 247 | . . 3 ⊢ (∪ 𝐴 = 𝐵 → ∪ 𝐴 ∈ V) |
6 | uniexb 6866 | . . 3 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
7 | 5, 6 | sylibr 223 | . 2 ⊢ (∪ 𝐴 = 𝐵 → 𝐴 ∈ V) |
8 | breq1 4586 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 Bigcup 𝐵 ↔ 𝐴 Bigcup 𝐵)) | |
9 | unieq 4380 | . . . 4 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
10 | 9 | eqeq1d 2612 | . . 3 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 = 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
11 | vex 3176 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | df-bigcup 31134 | . . . . 5 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
13 | brxp 5071 | . . . . . 6 ⊢ (𝑥(V × V)𝐵 ↔ (𝑥 ∈ V ∧ 𝐵 ∈ V)) | |
14 | 11, 3, 13 | mpbir2an 957 | . . . . 5 ⊢ 𝑥(V × V)𝐵 |
15 | epel 4952 | . . . . . . 7 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
16 | 15 | rexbii 3023 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝑥 𝑦 E 𝑧 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) |
17 | vex 3176 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
18 | 17, 11 | coep 30894 | . . . . . 6 ⊢ (𝑦( E ∘ E )𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 E 𝑧) |
19 | eluni2 4376 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) | |
20 | 16, 18, 19 | 3bitr4ri 292 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ 𝑦( E ∘ E )𝑥) |
21 | 11, 3, 12, 14, 20 | brtxpsd3 31173 | . . . 4 ⊢ (𝑥 Bigcup 𝐵 ↔ 𝐵 = ∪ 𝑥) |
22 | eqcom 2617 | . . . 4 ⊢ (𝐵 = ∪ 𝑥 ↔ ∪ 𝑥 = 𝐵) | |
23 | 21, 22 | bitri 263 | . . 3 ⊢ (𝑥 Bigcup 𝐵 ↔ ∪ 𝑥 = 𝐵) |
24 | 8, 10, 23 | vtoclbg 3240 | . 2 ⊢ (𝐴 ∈ V → (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
25 | 2, 7, 24 | pm5.21nii 367 | 1 ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 Vcvv 3173 ∪ cuni 4372 class class class wbr 4583 E cep 4947 × cxp 5036 ∘ ccom 5042 Bigcup cbigcup 31110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-symdif 3806 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-eprel 4949 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fo 5810 df-fv 5812 df-1st 7059 df-2nd 7060 df-txp 31130 df-bigcup 31134 |
This theorem is referenced by: dfbigcup2 31176 fvbigcup 31179 ellimits 31187 brapply 31215 dfrdg4 31228 |
Copyright terms: Public domain | W3C validator |