Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmptnn0wrd Structured version   Visualization version   GIF version

Theorem elovmptnn0wrd 13203
 Description: Implications for the value of an operation defined by the maps-to notation with a function of nonnegative integers into a class abstraction of words as a result having an element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and 𝑦 and 𝑛. (Contributed by AV, 16-Jul-2018.) (Revised by AV, 16-May-2019.)
Hypothesis
Ref Expression
elovmptnn0wrd.o 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑧 ∈ Word 𝑣𝜑}))
Assertion
Ref Expression
elovmptnn0wrd (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → ((𝑉 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑁 ∈ ℕ0𝑍 ∈ Word 𝑉)))
Distinct variable groups:   𝑛,𝑉,𝑣,𝑦,𝑧   𝑛,𝑁,𝑧   𝑛,𝑌,𝑣,𝑦,𝑧   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑛)   𝑁(𝑦,𝑣)   𝑂(𝑦,𝑧,𝑣,𝑛)   𝑍(𝑦,𝑣,𝑛)

Proof of Theorem elovmptnn0wrd
StepHypRef Expression
1 elovmptnn0wrd.o . . . . 5 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑧 ∈ Word 𝑣𝜑}))
21elovmpt3imp 6788 . . . 4 (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → (𝑉 ∈ V ∧ 𝑌 ∈ V))
3 wrdexg 13170 . . . . 5 (𝑉 ∈ V → Word 𝑉 ∈ V)
43adantr 480 . . . 4 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → Word 𝑉 ∈ V)
52, 4syl 17 . . 3 (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → Word 𝑉 ∈ V)
6 nn0ex 11175 . . 3 0 ∈ V
75, 6jctil 558 . 2 (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → (ℕ0 ∈ V ∧ Word 𝑉 ∈ V))
8 eqidd 2611 . . 3 ((𝑣 = 𝑉𝑦 = 𝑌) → ℕ0 = ℕ0)
9 wrdeq 13182 . . . 4 (𝑣 = 𝑉 → Word 𝑣 = Word 𝑉)
109adantr 480 . . 3 ((𝑣 = 𝑉𝑦 = 𝑌) → Word 𝑣 = Word 𝑉)
111, 8, 10elovmpt3rab1 6791 . 2 ((ℕ0 ∈ V ∧ Word 𝑉 ∈ V) → (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → ((𝑉 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑁 ∈ ℕ0𝑍 ∈ Word 𝑉))))
127, 11mpcom 37 1 (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → ((𝑉 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑁 ∈ ℕ0𝑍 ∈ Word 𝑉)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {crab 2900  Vcvv 3173   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  ℕ0cn0 11169  Word cword 13146 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154 This theorem is referenced by:  wwlknprop  26214
 Copyright terms: Public domain W3C validator