Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elovmpt2wrd | Structured version Visualization version GIF version |
Description: Implications for the value of an operation defined by the maps-to notation with a class abstration of words as a result having an element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and 𝑦. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
elovmpt2wrd.o | ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) |
Ref | Expression |
---|---|
elovmpt2wrd | ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpt2wrd.o | . . . 4 ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) | |
2 | csbwrdg 13189 | . . . . . . . 8 ⊢ (𝑣 ∈ V → ⦋𝑣 / 𝑥⦌Word 𝑥 = Word 𝑣) | |
3 | 2 | eqcomd 2616 | . . . . . . 7 ⊢ (𝑣 ∈ V → Word 𝑣 = ⦋𝑣 / 𝑥⦌Word 𝑥) |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑣 ∈ V ∧ 𝑦 ∈ V) → Word 𝑣 = ⦋𝑣 / 𝑥⦌Word 𝑥) |
5 | rabeq 3166 | . . . . . 6 ⊢ (Word 𝑣 = ⦋𝑣 / 𝑥⦌Word 𝑥 → {𝑧 ∈ Word 𝑣 ∣ 𝜑} = {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝑣 ∈ V ∧ 𝑦 ∈ V) → {𝑧 ∈ Word 𝑣 ∣ 𝜑} = {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
7 | 6 | mpt2eq3ia 6618 | . . . 4 ⊢ (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
8 | 1, 7 | eqtri 2632 | . . 3 ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
9 | csbwrdg 13189 | . . . . 5 ⊢ (𝑉 ∈ V → ⦋𝑉 / 𝑥⦌Word 𝑥 = Word 𝑉) | |
10 | wrdexg 13170 | . . . . 5 ⊢ (𝑉 ∈ V → Word 𝑉 ∈ V) | |
11 | 9, 10 | eqeltrd 2688 | . . . 4 ⊢ (𝑉 ∈ V → ⦋𝑉 / 𝑥⦌Word 𝑥 ∈ V) |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → ⦋𝑉 / 𝑥⦌Word 𝑥 ∈ V) |
13 | 8, 12 | elovmpt2rab1 6779 | . 2 ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥)) |
14 | 9 | eleq2d 2673 | . . . . 5 ⊢ (𝑉 ∈ V → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 ↔ 𝑍 ∈ Word 𝑉)) |
15 | 14 | adantr 480 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 ↔ 𝑍 ∈ Word 𝑉)) |
16 | id 22 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) | |
17 | 16 | 3expia 1259 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ Word 𝑉 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))) |
18 | 15, 17 | sylbid 229 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))) |
19 | 18 | 3impia 1253 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
20 | 13, 19 | syl 17 | 1 ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 {crab 2900 Vcvv 3173 ⦋csb 3499 (class class class)co 6549 ↦ cmpt2 6551 Word cword 13146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-map 7746 df-pm 7747 df-neg 10148 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-word 13154 |
This theorem is referenced by: wwlkprop 26213 |
Copyright terms: Public domain | W3C validator |