Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh2dim Structured version   Visualization version   GIF version

Theorem dvh2dim 35752
 Description: There is a vector that is outside the span of another. (Contributed by NM, 25-Apr-2015.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
Assertion
Ref Expression
dvh2dim (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh2dim
StepHypRef Expression
1 dvh3dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . . . 5 𝑉 = (Base‘𝑈)
4 eqid 2610 . . . . 5 (0g𝑈) = (0g𝑈)
5 dvh3dim.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 2, 3, 4, 5dvh1dim 35749 . . . 4 (𝜑 → ∃𝑧𝑉 𝑧 ≠ (0g𝑈))
76adantr 480 . . 3 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 𝑧 ≠ (0g𝑈))
8 simpr 476 . . . . . . . . . 10 ((𝜑𝑋 = (0g𝑈)) → 𝑋 = (0g𝑈))
98sneqd 4137 . . . . . . . . 9 ((𝜑𝑋 = (0g𝑈)) → {𝑋} = {(0g𝑈)})
109fveq2d 6107 . . . . . . . 8 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋}) = (𝑁‘{(0g𝑈)}))
111, 2, 5dvhlmod 35417 . . . . . . . . . 10 (𝜑𝑈 ∈ LMod)
12 dvh3dim.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑈)
134, 12lspsn0 18829 . . . . . . . . . 10 (𝑈 ∈ LMod → (𝑁‘{(0g𝑈)}) = {(0g𝑈)})
1411, 13syl 17 . . . . . . . . 9 (𝜑 → (𝑁‘{(0g𝑈)}) = {(0g𝑈)})
1514adantr 480 . . . . . . . 8 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{(0g𝑈)}) = {(0g𝑈)})
1610, 15eqtrd 2644 . . . . . . 7 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋}) = {(0g𝑈)})
1716eleq2d 2673 . . . . . 6 ((𝜑𝑋 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋}) ↔ 𝑧 ∈ {(0g𝑈)}))
18 velsn 4141 . . . . . 6 (𝑧 ∈ {(0g𝑈)} ↔ 𝑧 = (0g𝑈))
1917, 18syl6bb 275 . . . . 5 ((𝜑𝑋 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋}) ↔ 𝑧 = (0g𝑈)))
2019necon3bbid 2819 . . . 4 ((𝜑𝑋 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋}) ↔ 𝑧 ≠ (0g𝑈)))
2120rexbidv 3034 . . 3 ((𝜑𝑋 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}) ↔ ∃𝑧𝑉 𝑧 ≠ (0g𝑈)))
227, 21mpbird 246 . 2 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))
235adantr 480 . . . 4 ((𝜑𝑋 ≠ (0g𝑈)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 dvh3dim.x . . . . 5 (𝜑𝑋𝑉)
2524adantr 480 . . . 4 ((𝜑𝑋 ≠ (0g𝑈)) → 𝑋𝑉)
26 simpr 476 . . . 4 ((𝜑𝑋 ≠ (0g𝑈)) → 𝑋 ≠ (0g𝑈))
271, 2, 3, 12, 23, 25, 25, 4, 26, 26dvhdimlem 35751 . . 3 ((𝜑𝑋 ≠ (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑋}))
28 dfsn2 4138 . . . . . . 7 {𝑋} = {𝑋, 𝑋}
2928fveq2i 6106 . . . . . 6 (𝑁‘{𝑋}) = (𝑁‘{𝑋, 𝑋})
3029eleq2i 2680 . . . . 5 (𝑧 ∈ (𝑁‘{𝑋}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑋}))
3130notbii 309 . . . 4 𝑧 ∈ (𝑁‘{𝑋}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑋}))
3231rexbii 3023 . . 3 (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑋}))
3327, 32sylibr 223 . 2 ((𝜑𝑋 ≠ (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))
3422, 33pm2.61dane 2869 1 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  {csn 4125  {cpr 4127  ‘cfv 5804  Basecbs 15695  0gc0g 15923  LModclmod 18686  LSpanclspn 18792  HLchlt 33655  LHypclh 34288  DVecHcdvh 35385 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lsatoms 33281  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tgrp 35049  df-tendo 35061  df-edring 35063  df-dveca 35309  df-disoa 35336  df-dvech 35386  df-dib 35446  df-dic 35480  df-dih 35536  df-doch 35655  df-djh 35702 This theorem is referenced by:  dvh3dim  35753  dochsnnz  35757  hdmapevec  36145  hdmaprnlem15N  36171
 Copyright terms: Public domain W3C validator