Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicssdvh Structured version   Visualization version   GIF version

Theorem dicssdvh 35493
 Description: The partial isomorphism C maps to a set of vectors in full vector space H. (Contributed by NM, 19-Jan-2014.)
Hypotheses
Ref Expression
dicssdvh.l = (le‘𝐾)
dicssdvh.a 𝐴 = (Atoms‘𝐾)
dicssdvh.h 𝐻 = (LHyp‘𝐾)
dicssdvh.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicssdvh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dicssdvh.v 𝑉 = (Base‘𝑈)
Assertion
Ref Expression
dicssdvh (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ 𝑉)

Proof of Theorem dicssdvh
Dummy variables 𝑓 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 790 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
2 simpll 786 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simprr 792 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))
4 dicssdvh.l . . . . . . . . . . 11 = (le‘𝐾)
5 eqid 2610 . . . . . . . . . . 11 (oc‘𝐾) = (oc‘𝐾)
6 dicssdvh.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
7 dicssdvh.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
84, 5, 6, 7lhpocnel 34322 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
98ad2antrr 758 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
10 simplr 788 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
11 eqid 2610 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
12 eqid 2610 . . . . . . . . . 10 (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)
134, 6, 7, 11, 12ltrniotacl 34885 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
142, 9, 10, 13syl3anc 1318 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
15 eqid 2610 . . . . . . . . 9 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
167, 11, 15tendocl 35073 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∈ ((LTrn‘𝐾)‘𝑊))
172, 3, 14, 16syl3anc 1318 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∈ ((LTrn‘𝐾)‘𝑊))
181, 17eqeltrd 2688 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))
1918, 3, 3jca31 555 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)))
2019ex 449 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))))
2120ssopab2dv 4929 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ⊆ {⟨𝑓, 𝑠⟩ ∣ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
22 opabssxp 5116 . . 3 {⟨𝑓, 𝑠⟩ ∣ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))
2321, 22syl6ss 3580 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
24 eqid 2610 . . 3 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
25 dicssdvh.i . . 3 𝐼 = ((DIsoC‘𝐾)‘𝑊)
264, 6, 7, 24, 11, 15, 25dicval 35483 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
27 dicssdvh.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
28 dicssdvh.v . . . 4 𝑉 = (Base‘𝑈)
297, 11, 15, 27, 28dvhvbase 35394 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑉 = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
3029adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑉 = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
3123, 26, 303sstr4d 3611 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ 𝑉)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540   class class class wbr 4583  {copab 4642   × cxp 5036  ‘cfv 5804  ℩crio 6510  Basecbs 15695  lecple 15775  occoc 15776  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  TEndoctendo 35058  DVecHcdvh 35385  DIsoCcdic 35479 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-sca 15784  df-vsca 15785  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tendo 35061  df-dvech 35386  df-dic 35480 This theorem is referenced by:  dicelval1stN  35495  dicelval2nd  35496  dicvaddcl  35497  dicvscacl  35498  diclss  35500
 Copyright terms: Public domain W3C validator