Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvscacl Structured version   Visualization version   GIF version

Theorem dicvscacl 35498
Description: Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dicvscacl.l = (le‘𝐾)
dicvscacl.a 𝐴 = (Atoms‘𝐾)
dicvscacl.h 𝐻 = (LHyp‘𝐾)
dicvscacl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicvscacl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dicvscacl.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicvscacl.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dicvscacl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) ∈ (𝐼𝑄))

Proof of Theorem dicvscacl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simp1 1054 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp3l 1082 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑋𝐸)
3 dicvscacl.l . . . . . . . 8 = (le‘𝐾)
4 dicvscacl.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
5 dicvscacl.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
6 dicvscacl.i . . . . . . . 8 𝐼 = ((DIsoC‘𝐾)‘𝑊)
7 dicvscacl.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 eqid 2610 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
93, 4, 5, 6, 7, 8dicssdvh 35493 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (Base‘𝑈))
10 eqid 2610 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
11 dicvscacl.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
125, 10, 11, 7, 8dvhvbase 35394 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × 𝐸))
1312eqcomd 2616 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈))
1413adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈))
159, 14sseqtr4d 3605 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸))
16153adant3 1074 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸))
17 simp3r 1083 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (𝐼𝑄))
1816, 17sseldd 3569 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸))
19 dicvscacl.s . . . . 5 · = ( ·𝑠𝑈)
205, 10, 11, 7, 19dvhvsca 35408 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐸𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
211, 2, 18, 20syl12anc 1316 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
22 fvi 6165 . . . . . 6 (𝑋𝐸 → ( I ‘𝑋) = 𝑋)
232, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ( I ‘𝑋) = 𝑋)
2423coeq1d 5205 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (( I ‘𝑋) ∘ (2nd𝑌)) = (𝑋 ∘ (2nd𝑌)))
2524opeq2d 4347 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
2621, 25eqtr4d 2647 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩)
27 eqid 2610 . . . . . . . 8 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
283, 4, 5, 27, 10, 6dicelval1sta 35494 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
29283adant3l 1314 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
3029fveq2d 6107 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
313, 4, 5, 11, 6dicelval2nd 35496 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (2nd𝑌) ∈ 𝐸)
32313adant3l 1314 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (2nd𝑌) ∈ 𝐸)
335, 10, 11tendof 35069 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝑌) ∈ 𝐸) → (2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
341, 32, 33syl2anc 691 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
35 eqid 2610 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
363, 35, 4, 5lhpocnel 34322 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
37363ad2ant1 1075 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
38 simp2 1055 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
39 eqid 2610 . . . . . . . 8 (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)
403, 4, 5, 10, 39ltrniotacl 34885 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
411, 37, 38, 40syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
42 fvco3 6185 . . . . . 6 (((2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
4334, 41, 42syl2anc 691 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
4430, 43eqtr4d 2647 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
4524fveq1d 6105 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
4644, 45eqtr4d 2647 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
475, 11tendococl 35078 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐸 ∧ (2nd𝑌) ∈ 𝐸) → (𝑋 ∘ (2nd𝑌)) ∈ 𝐸)
481, 2, 32, 47syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 ∘ (2nd𝑌)) ∈ 𝐸)
4924, 48eqeltrd 2688 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)
50 fvex 6113 . . . . 5 (𝑋‘(1st𝑌)) ∈ V
51 fvex 6113 . . . . . 6 ( I ‘𝑋) ∈ V
52 fvex 6113 . . . . . 6 (2nd𝑌) ∈ V
5351, 52coex 7011 . . . . 5 (( I ‘𝑋) ∘ (2nd𝑌)) ∈ V
543, 4, 5, 27, 10, 11, 6, 50, 53dicopelval 35484 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ ((𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)))
55543adant3 1074 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ ((𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)))
5646, 49, 55mpbir2and 959 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄))
5726, 56eqeltrd 2688 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) ∈ (𝐼𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wss 3540  cop 4131   class class class wbr 4583   I cid 4948   × cxp 5036  ccom 5042  wf 5800  cfv 5804  crio 6510  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Basecbs 15695   ·𝑠 cvsca 15772  lecple 15775  occoc 15776  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  TEndoctendo 35058  DVecHcdvh 35385  DIsoCcdic 35479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-sca 15784  df-vsca 15785  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tendo 35061  df-dvech 35386  df-dic 35480
This theorem is referenced by:  diclss  35500
  Copyright terms: Public domain W3C validator