Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssopab2dv Structured version   Visualization version   GIF version

Theorem ssopab2dv 4929
 Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypothesis
Ref Expression
ssopab2dv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ssopab2dv (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem ssopab2dv
StepHypRef Expression
1 ssopab2dv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimivv 1843 . 2 (𝜑 → ∀𝑥𝑦(𝜓𝜒))
3 ssopab2 4926 . 2 (∀𝑥𝑦(𝜓𝜒) → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜒})
42, 3syl 17 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜒})
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473   ⊆ wss 3540  {copab 4642 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-in 3547  df-ss 3554  df-opab 4644 This theorem is referenced by:  xpss12  5148  coss1  5199  coss2  5200  cnvss  5216  cnvssOLD  5217  aceq3lem  8826  coss12d  13559  shftfval  13658  sslm  20913  ulmval  23938  clwlkswlks  26286  iseupa  26492  mptssALT  28857  fpwrelmap  28896  dicssdvh  35493  rfovcnvf1od  37318
 Copyright terms: Public domain W3C validator