Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  copisnmnd Structured version   Visualization version   GIF version

Theorem copisnmnd 41599
Description: A structure with a constant group addition operation and at least two elements is not a monoid. (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
copisnmnd.b 𝐵 = (Base‘𝑀)
copisnmnd.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
copisnmnd.c (𝜑𝐶𝐵)
copisnmnd.n (𝜑 → 1 < (#‘𝐵))
Assertion
Ref Expression
copisnmnd (𝜑𝑀 ∉ Mnd)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem copisnmnd
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 copisnmnd.c . . 3 (𝜑𝐶𝐵)
2 copisnmnd.n . . 3 (𝜑 → 1 < (#‘𝐵))
3 copisnmnd.b . . . . . . 7 𝐵 = (Base‘𝑀)
4 fvex 6113 . . . . . . 7 (Base‘𝑀) ∈ V
53, 4eqeltri 2684 . . . . . 6 𝐵 ∈ V
65a1i 11 . . . . 5 ((𝐶𝐵 ∧ 1 < (#‘𝐵)) → 𝐵 ∈ V)
7 simpr 476 . . . . 5 ((𝐶𝐵 ∧ 1 < (#‘𝐵)) → 1 < (#‘𝐵))
8 simpl 472 . . . . 5 ((𝐶𝐵 ∧ 1 < (#‘𝐵)) → 𝐶𝐵)
9 hashgt12el2 13071 . . . . 5 ((𝐵 ∈ V ∧ 1 < (#‘𝐵) ∧ 𝐶𝐵) → ∃𝑐𝐵 𝐶𝑐)
106, 7, 8, 9syl3anc 1318 . . . 4 ((𝐶𝐵 ∧ 1 < (#‘𝐵)) → ∃𝑐𝐵 𝐶𝑐)
11 df-ne 2782 . . . . . . 7 (𝐶𝑐 ↔ ¬ 𝐶 = 𝑐)
1211rexbii 3023 . . . . . 6 (∃𝑐𝐵 𝐶𝑐 ↔ ∃𝑐𝐵 ¬ 𝐶 = 𝑐)
13 rexnal 2978 . . . . . 6 (∃𝑐𝐵 ¬ 𝐶 = 𝑐 ↔ ¬ ∀𝑐𝐵 𝐶 = 𝑐)
1412, 13bitri 263 . . . . 5 (∃𝑐𝐵 𝐶𝑐 ↔ ¬ ∀𝑐𝐵 𝐶 = 𝑐)
15 eqidd 2611 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
16 eqidd 2611 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑥 = 𝑎𝑦 = 𝑐)) → 𝐶 = 𝐶)
17 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝑎𝐵)
1817adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑎𝐵)
19 simpr 476 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑐𝐵)
201adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝐶𝐵)
2120adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝐶𝐵)
2215, 16, 18, 19, 21ovmpt2d 6686 . . . . . . . . . . . 12 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
2322adantr 480 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
24 simpr 476 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
2523, 24eqtr3d 2646 . . . . . . . . . 10 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → 𝐶 = 𝑐)
2625ex 449 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐𝐶 = 𝑐))
2726ralimdva 2945 . . . . . . . 8 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 → ∀𝑐𝐵 𝐶 = 𝑐))
2827rexlimdva 3013 . . . . . . 7 (𝜑 → (∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 → ∀𝑐𝐵 𝐶 = 𝑐))
2928con3d 147 . . . . . 6 (𝜑 → (¬ ∀𝑐𝐵 𝐶 = 𝑐 → ¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐))
30 rexnal 2978 . . . . . . . . 9 (∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3130bicomi 213 . . . . . . . 8 (¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3231ralbii 2963 . . . . . . 7 (∀𝑎𝐵 ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
33 ralnex 2975 . . . . . . 7 (∀𝑎𝐵 ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
34 df-ne 2782 . . . . . . . . . 10 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐 ↔ ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3534bicomi 213 . . . . . . . . 9 (¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3635rexbii 3023 . . . . . . . 8 (∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∃𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3736ralbii 2963 . . . . . . 7 (∀𝑎𝐵𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3832, 33, 373bitr3i 289 . . . . . 6 (¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3929, 38syl6ib 240 . . . . 5 (𝜑 → (¬ ∀𝑐𝐵 𝐶 = 𝑐 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
4014, 39syl5bi 231 . . . 4 (𝜑 → (∃𝑐𝐵 𝐶𝑐 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
4110, 40syl5 33 . . 3 (𝜑 → ((𝐶𝐵 ∧ 1 < (#‘𝐵)) → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
421, 2, 41mp2and 711 . 2 (𝜑 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
43 copisnmnd.p . . . 4 (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
4443eqcomi 2619 . . 3 (𝑥𝐵, 𝑦𝐵𝐶) = (+g𝑀)
453, 44isnmnd 17121 . 2 (∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐𝑀 ∉ Mnd)
4642, 45syl 17 1 (𝜑𝑀 ∉ Mnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wnel 2781  wral 2896  wrex 2897  Vcvv 3173   class class class wbr 4583  cfv 5804  (class class class)co 6549  cmpt2 6551  1c1 9816   < clt 9953  #chash 12979  Basecbs 15695  +gcplusg 15768  Mndcmnd 17117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-mnd 17118
This theorem is referenced by:  cznnring  41748
  Copyright terms: Public domain W3C validator