Step | Hyp | Ref
| Expression |
1 | | copisnmnd.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
2 | | copisnmnd.n |
. . 3
⊢ (𝜑 → 1 < (#‘𝐵)) |
3 | | copisnmnd.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑀) |
4 | | fvex 6113 |
. . . . . . 7
⊢
(Base‘𝑀)
∈ V |
5 | 3, 4 | eqeltri 2684 |
. . . . . 6
⊢ 𝐵 ∈ V |
6 | 5 | a1i 11 |
. . . . 5
⊢ ((𝐶 ∈ 𝐵 ∧ 1 < (#‘𝐵)) → 𝐵 ∈ V) |
7 | | simpr 476 |
. . . . 5
⊢ ((𝐶 ∈ 𝐵 ∧ 1 < (#‘𝐵)) → 1 < (#‘𝐵)) |
8 | | simpl 472 |
. . . . 5
⊢ ((𝐶 ∈ 𝐵 ∧ 1 < (#‘𝐵)) → 𝐶 ∈ 𝐵) |
9 | | hashgt12el2 13071 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ 1 <
(#‘𝐵) ∧ 𝐶 ∈ 𝐵) → ∃𝑐 ∈ 𝐵 𝐶 ≠ 𝑐) |
10 | 6, 7, 8, 9 | syl3anc 1318 |
. . . 4
⊢ ((𝐶 ∈ 𝐵 ∧ 1 < (#‘𝐵)) → ∃𝑐 ∈ 𝐵 𝐶 ≠ 𝑐) |
11 | | df-ne 2782 |
. . . . . . 7
⊢ (𝐶 ≠ 𝑐 ↔ ¬ 𝐶 = 𝑐) |
12 | 11 | rexbii 3023 |
. . . . . 6
⊢
(∃𝑐 ∈
𝐵 𝐶 ≠ 𝑐 ↔ ∃𝑐 ∈ 𝐵 ¬ 𝐶 = 𝑐) |
13 | | rexnal 2978 |
. . . . . 6
⊢
(∃𝑐 ∈
𝐵 ¬ 𝐶 = 𝑐 ↔ ¬ ∀𝑐 ∈ 𝐵 𝐶 = 𝑐) |
14 | 12, 13 | bitri 263 |
. . . . 5
⊢
(∃𝑐 ∈
𝐵 𝐶 ≠ 𝑐 ↔ ¬ ∀𝑐 ∈ 𝐵 𝐶 = 𝑐) |
15 | | eqidd 2611 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
16 | | eqidd 2611 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) ∧ (𝑥 = 𝑎 ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶) |
17 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
18 | 17 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
19 | | simpr 476 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → 𝑐 ∈ 𝐵) |
20 | 1 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
21 | 20 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
22 | 15, 16, 18, 19, 21 | ovmpt2d 6686 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝐶) |
23 | 22 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) ∧ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝐶) |
24 | | simpr 476 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) ∧ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) |
25 | 23, 24 | eqtr3d 2646 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) ∧ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) → 𝐶 = 𝑐) |
26 | 25 | ex 449 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 → 𝐶 = 𝑐)) |
27 | 26 | ralimdva 2945 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 → ∀𝑐 ∈ 𝐵 𝐶 = 𝑐)) |
28 | 27 | rexlimdva 3013 |
. . . . . . 7
⊢ (𝜑 → (∃𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 → ∀𝑐 ∈ 𝐵 𝐶 = 𝑐)) |
29 | 28 | con3d 147 |
. . . . . 6
⊢ (𝜑 → (¬ ∀𝑐 ∈ 𝐵 𝐶 = 𝑐 → ¬ ∃𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐)) |
30 | | rexnal 2978 |
. . . . . . . . 9
⊢
(∃𝑐 ∈
𝐵 ¬ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ¬ ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) |
31 | 30 | bicomi 213 |
. . . . . . . 8
⊢ (¬
∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ∃𝑐 ∈ 𝐵 ¬ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) |
32 | 31 | ralbii 2963 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝐵 ¬ ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ¬ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) |
33 | | ralnex 2975 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝐵 ¬ ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ¬ ∃𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) |
34 | | df-ne 2782 |
. . . . . . . . . 10
⊢ ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐 ↔ ¬ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) |
35 | 34 | bicomi 213 |
. . . . . . . . 9
⊢ (¬
(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐) |
36 | 35 | rexbii 3023 |
. . . . . . . 8
⊢
(∃𝑐 ∈
𝐵 ¬ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐) |
37 | 36 | ralbii 2963 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝐵 ∃𝑐 ∈ 𝐵 ¬ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐) |
38 | 32, 33, 37 | 3bitr3i 289 |
. . . . . 6
⊢ (¬
∃𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐) |
39 | 29, 38 | syl6ib 240 |
. . . . 5
⊢ (𝜑 → (¬ ∀𝑐 ∈ 𝐵 𝐶 = 𝑐 → ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐)) |
40 | 14, 39 | syl5bi 231 |
. . . 4
⊢ (𝜑 → (∃𝑐 ∈ 𝐵 𝐶 ≠ 𝑐 → ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐)) |
41 | 10, 40 | syl5 33 |
. . 3
⊢ (𝜑 → ((𝐶 ∈ 𝐵 ∧ 1 < (#‘𝐵)) → ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐)) |
42 | 1, 2, 41 | mp2and 711 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐) |
43 | | copisnmnd.p |
. . . 4
⊢
(+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) |
44 | 43 | eqcomi 2619 |
. . 3
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (+g‘𝑀) |
45 | 3, 44 | isnmnd 17121 |
. 2
⊢
(∀𝑎 ∈
𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐 → 𝑀 ∉ Mnd) |
46 | 42, 45 | syl 17 |
1
⊢ (𝜑 → 𝑀 ∉ Mnd) |