Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  constr3pth Structured version   Visualization version   GIF version

Theorem constr3pth 26188
 Description: Construction of a path from three given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.)
Hypotheses
Ref Expression
constr3cycl.f 𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}
constr3cycl.p 𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})
Assertion
Ref Expression
constr3pth ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → 𝐹(𝑉 Paths 𝐸)𝑃)

Proof of Theorem constr3pth
StepHypRef Expression
1 usgrav 25867 . . 3 (𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
2 constr3cycl.f . . . . 5 𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}
3 constr3cycl.p . . . . 5 𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})
42, 3constr3lem1 26173 . . . 4 (𝐹 ∈ V ∧ 𝑃 ∈ V)
5 simpr 476 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) → 𝑉 USGrph 𝐸)
65ad2antrr 758 . . . . . . . . . 10 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → 𝑉 USGrph 𝐸)
7 simplr 788 . . . . . . . . . 10 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
8 simpr 476 . . . . . . . . . 10 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸))
92, 3constr3trl 26187 . . . . . . . . . 10 ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → 𝐹(𝑉 Trails 𝐸)𝑃)
106, 7, 8, 9syl3anc 1318 . . . . . . . . 9 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → 𝐹(𝑉 Trails 𝐸)𝑃)
11 3cycl3dv 26170 . . . . . . . . . . . . . 14 ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → (𝐴𝐵𝐵𝐶𝐶𝐴))
1211ex 449 . . . . . . . . . . . . 13 (𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸) → (𝐴𝐵𝐵𝐶𝐶𝐴)))
1312ad2antlr 759 . . . . . . . . . . . 12 (((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸) → (𝐴𝐵𝐵𝐶𝐶𝐴)))
1413imp 444 . . . . . . . . . . 11 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → (𝐴𝐵𝐵𝐶𝐶𝐴))
1514simp2d 1067 . . . . . . . . . 10 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → 𝐵𝐶)
162, 3constr3pthlem2 26184 . . . . . . . . . 10 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶) → Fun (𝑃 ↾ (1..^(#‘𝐹))))
177, 15, 16syl2anc 691 . . . . . . . . 9 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → Fun (𝑃 ↾ (1..^(#‘𝐹))))
182, 3constr3pthlem3 26185 . . . . . . . . . 10 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅)
197, 14, 18syl2anc 691 . . . . . . . . 9 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅)
2010, 17, 193jca 1235 . . . . . . . 8 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → (𝐹(𝑉 Trails 𝐸)𝑃 ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅))
2120ex 449 . . . . . . 7 (((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸) → (𝐹(𝑉 Trails 𝐸)𝑃 ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅)))
22 ispth 26098 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Paths 𝐸)𝑃 ↔ (𝐹(𝑉 Trails 𝐸)𝑃 ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅)))
2322ad2antrr 758 . . . . . . 7 (((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐹(𝑉 Paths 𝐸)𝑃 ↔ (𝐹(𝑉 Trails 𝐸)𝑃 ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅)))
2421, 23sylibrd 248 . . . . . 6 (((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸) → 𝐹(𝑉 Paths 𝐸)𝑃))
2524ex 449 . . . . 5 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝑉 USGrph 𝐸) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸) → 𝐹(𝑉 Paths 𝐸)𝑃)))
2625ex 449 . . . 4 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝑉 USGrph 𝐸 → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸) → 𝐹(𝑉 Paths 𝐸)𝑃))))
274, 26mpan2 703 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 USGrph 𝐸 → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸) → 𝐹(𝑉 Paths 𝐸)𝑃))))
281, 27mpcom 37 . 2 (𝑉 USGrph 𝐸 → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸) → 𝐹(𝑉 Paths 𝐸)𝑃)))
29283imp 1249 1 ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → 𝐹(𝑉 Paths 𝐸)𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  Vcvv 3173   ∪ cun 3538   ∩ cin 3539  ∅c0 3874  {cpr 4127  {ctp 4129  ⟨cop 4131   class class class wbr 4583  ◡ccnv 5037  ran crn 5039   ↾ cres 5040   “ cima 5041  Fun wfun 5798  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  2c2 10947  3c3 10948  ..^cfzo 12334  #chash 12979   USGrph cusg 25859   Trails ctrail 26027   Paths cpath 26028 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-usgra 25862  df-wlk 26036  df-trail 26037  df-pth 26038 This theorem is referenced by:  constr3cycl  26189
 Copyright terms: Public domain W3C validator