MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  constr3pth Structured version   Unicode version

Theorem constr3pth 24336
Description: Construction of a path from three given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.)
Hypotheses
Ref Expression
constr3cycl.f  |-  F  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }
constr3cycl.p  |-  P  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )
Assertion
Ref Expression
constr3pth  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  F
( V Paths  E ) P )

Proof of Theorem constr3pth
StepHypRef Expression
1 usgrav 24014 . . 3  |-  ( V USGrph  E  ->  ( V  e. 
_V  /\  E  e.  _V ) )
2 constr3cycl.f . . . . 5  |-  F  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }
3 constr3cycl.p . . . . 5  |-  P  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )
42, 3constr3lem1 24321 . . . 4  |-  ( F  e.  _V  /\  P  e.  _V )
5 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  V USGrph  E )  ->  V USGrph  E )
65ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  V USGrph  E )
7 simplr 754 . . . . . . . . . 10  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )
8 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )
92, 3constr3trl 24335 . . . . . . . . . 10  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  F
( V Trails  E ) P )
106, 7, 8, 9syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  F ( V Trails  E ) P )
11 3cycl3dv 24318 . . . . . . . . . . . . . 14  |-  ( ( V USGrph  E  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( A  =/= 
B  /\  B  =/=  C  /\  C  =/=  A
) )
1211ex 434 . . . . . . . . . . . . 13  |-  ( V USGrph  E  ->  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  -> 
( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) ) )
1312ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  -> 
( A  =/=  B  /\  B  =/=  C  /\  C  =/=  A
) ) )
1413imp 429 . . . . . . . . . . 11  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( A  =/= 
B  /\  B  =/=  C  /\  C  =/=  A
) )
1514simp2d 1009 . . . . . . . . . 10  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  B  =/=  C
)
162, 3constr3pthlem2 24332 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  B  =/=  C )  ->  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) ) )
177, 15, 16syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  Fun  `' ( P  |`  ( 1..^ (
# `  F )
) ) )
182, 3constr3pthlem3 24333 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  B  =/= 
C  /\  C  =/=  A ) )  ->  (
( P " {
0 ,  ( # `  F ) } )  i^i  ( P "
( 1..^ ( # `  F ) ) ) )  =  (/) )
197, 14, 18syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( ( P
" { 0 ,  ( # `  F
) } )  i^i  ( P " (
1..^ ( # `  F
) ) ) )  =  (/) )
2010, 17, 193jca 1176 . . . . . . . 8  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( F ( V Trails  E ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) )
2120ex 434 . . . . . . 7  |-  ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  -> 
( F ( V Trails  E ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) ) )
22 ispth 24246 . . . . . . . 8  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V Paths  E ) P 
<->  ( F ( V Trails  E ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) ) )
2322ad2antrr 725 . . . . . . 7  |-  ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( F
( V Paths  E ) P 
<->  ( F ( V Trails  E ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) ) )
2421, 23sylibrd 234 . . . . . 6  |-  ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  ->  F ( V Paths  E
) P ) )
2524ex 434 . . . . 5  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  V USGrph  E )  ->  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  ->  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  ->  F ( V Paths  E
) P ) ) )
2625ex 434 . . . 4  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( V USGrph  E  ->  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  (
( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  ->  F ( V Paths  E ) P ) ) ) )
274, 26mpan2 671 . . 3  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( V USGrph  E  -> 
( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  (
( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  ->  F ( V Paths  E ) P ) ) ) )
281, 27mpcom 36 . 2  |-  ( V USGrph  E  ->  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  (
( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  ->  F ( V Paths  E ) P ) ) )
29283imp 1190 1  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  F
( V Paths  E ) P )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3113    u. cun 3474    i^i cin 3475   (/)c0 3785   {cpr 4029   {ctp 4031   <.cop 4033   class class class wbr 4447   `'ccnv 4998   ran crn 5000    |` cres 5001   "cima 5002   Fun wfun 5580   ` cfv 5586  (class class class)co 6282   0cc0 9488   1c1 9489   2c2 10581   3c3 10582  ..^cfzo 11788   #chash 12369   USGrph cusg 24006   Trails ctrail 24175   Paths cpath 24176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-fzo 11789  df-hash 12370  df-word 12504  df-usgra 24009  df-wlk 24184  df-trail 24185  df-pth 24186
This theorem is referenced by:  constr3cycl  24337
  Copyright terms: Public domain W3C validator