MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjnmz Structured version   Visualization version   GIF version

Theorem conjnmz 17517
Description: A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
conjnmz.1 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
Assertion
Ref Expression
conjnmz ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 = ran 𝐹)
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑧, + ,𝑦   𝑥,𝐴,𝑦,𝑧   𝑦,𝐹,𝑧   𝑥,𝑁   𝑥,𝐺,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥)   (𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem conjnmz
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 subgrcl 17422 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21ad2antrr 758 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝐺 ∈ Grp)
3 conjnmz.1 . . . . . . . . . . . 12 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
4 ssrab2 3650 . . . . . . . . . . . 12 {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⊆ 𝑋
53, 4eqsstri 3598 . . . . . . . . . . 11 𝑁𝑋
6 simplr 788 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝐴𝑁)
75, 6sseldi 3566 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝐴𝑋)
8 conjghm.x . . . . . . . . . . 11 𝑋 = (Base‘𝐺)
9 eqid 2610 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
108, 9grpinvcl 17290 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
112, 7, 10syl2anc 691 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((invg𝐺)‘𝐴) ∈ 𝑋)
128subgss 17418 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
1312adantr 480 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆𝑋)
1413sselda 3568 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝑤𝑋)
15 conjghm.p . . . . . . . . . 10 + = (+g𝐺)
168, 15grpass 17254 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝑤𝑋𝐴𝑋)) → ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) = (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)))
172, 11, 14, 7, 16syl13anc 1320 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) = (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)))
18 eqid 2610 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
198, 15, 18, 9grprinv 17292 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴 + ((invg𝐺)‘𝐴)) = (0g𝐺))
202, 7, 19syl2anc 691 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐴 + ((invg𝐺)‘𝐴)) = (0g𝐺))
2120oveq1d 6564 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + ((invg𝐺)‘𝐴)) + 𝑤) = ((0g𝐺) + 𝑤))
228, 15grpass 17254 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝐴𝑋 ∧ ((invg𝐺)‘𝐴) ∈ 𝑋𝑤𝑋)) → ((𝐴 + ((invg𝐺)‘𝐴)) + 𝑤) = (𝐴 + (((invg𝐺)‘𝐴) + 𝑤)))
232, 7, 11, 14, 22syl13anc 1320 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + ((invg𝐺)‘𝐴)) + 𝑤) = (𝐴 + (((invg𝐺)‘𝐴) + 𝑤)))
248, 15, 18grplid 17275 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺) + 𝑤) = 𝑤)
252, 14, 24syl2anc 691 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((0g𝐺) + 𝑤) = 𝑤)
2621, 23, 253eqtr3d 2652 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐴 + (((invg𝐺)‘𝐴) + 𝑤)) = 𝑤)
27 simpr 476 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝑤𝑆)
2826, 27eqeltrd 2688 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐴 + (((invg𝐺)‘𝐴) + 𝑤)) ∈ 𝑆)
298, 15grpcl 17253 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋𝑤𝑋) → (((invg𝐺)‘𝐴) + 𝑤) ∈ 𝑋)
302, 11, 14, 29syl3anc 1318 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (((invg𝐺)‘𝐴) + 𝑤) ∈ 𝑋)
313nmzbi 17457 . . . . . . . . . 10 ((𝐴𝑁 ∧ (((invg𝐺)‘𝐴) + 𝑤) ∈ 𝑋) → ((𝐴 + (((invg𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆))
326, 30, 31syl2anc 691 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + (((invg𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆))
3328, 32mpbid 221 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆)
3417, 33eqeltrrd 2689 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆)
35 oveq2 6557 . . . . . . . . 9 (𝑥 = (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) → (𝐴 + 𝑥) = (𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))))
3635oveq1d 6564 . . . . . . . 8 (𝑥 = (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) → ((𝐴 + 𝑥) 𝐴) = ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴))
37 conjsubg.f . . . . . . . 8 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
38 ovex 6577 . . . . . . . 8 ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴) ∈ V
3936, 37, 38fvmpt 6191 . . . . . . 7 ((((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆 → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) = ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴))
4034, 39syl 17 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) = ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴))
4120oveq1d 6564 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + ((invg𝐺)‘𝐴)) + (𝑤 + 𝐴)) = ((0g𝐺) + (𝑤 + 𝐴)))
428, 15grpcl 17253 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝐴𝑋) → (𝑤 + 𝐴) ∈ 𝑋)
432, 14, 7, 42syl3anc 1318 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝑤 + 𝐴) ∈ 𝑋)
448, 15grpass 17254 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝐴𝑋 ∧ ((invg𝐺)‘𝐴) ∈ 𝑋 ∧ (𝑤 + 𝐴) ∈ 𝑋)) → ((𝐴 + ((invg𝐺)‘𝐴)) + (𝑤 + 𝐴)) = (𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))))
452, 7, 11, 43, 44syl13anc 1320 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + ((invg𝐺)‘𝐴)) + (𝑤 + 𝐴)) = (𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))))
468, 15, 18grplid 17275 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑤 + 𝐴) ∈ 𝑋) → ((0g𝐺) + (𝑤 + 𝐴)) = (𝑤 + 𝐴))
472, 43, 46syl2anc 691 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((0g𝐺) + (𝑤 + 𝐴)) = (𝑤 + 𝐴))
4841, 45, 473eqtr3d 2652 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) = (𝑤 + 𝐴))
4948oveq1d 6564 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴) = ((𝑤 + 𝐴) 𝐴))
50 conjghm.m . . . . . . . 8 = (-g𝐺)
518, 15, 50grppncan 17329 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝐴𝑋) → ((𝑤 + 𝐴) 𝐴) = 𝑤)
522, 14, 7, 51syl3anc 1318 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝑤 + 𝐴) 𝐴) = 𝑤)
5340, 49, 523eqtrd 2648 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) = 𝑤)
54 ovex 6577 . . . . . . 7 ((𝐴 + 𝑥) 𝐴) ∈ V
5554, 37fnmpti 5935 . . . . . 6 𝐹 Fn 𝑆
56 fnfvelrn 6264 . . . . . 6 ((𝐹 Fn 𝑆 ∧ (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆) → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹)
5755, 34, 56sylancr 694 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹)
5853, 57eqeltrrd 2689 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝑤 ∈ ran 𝐹)
5958ex 449 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → (𝑤𝑆𝑤 ∈ ran 𝐹))
6059ssrdv 3574 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 ⊆ ran 𝐹)
611ad2antrr 758 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝐺 ∈ Grp)
62 simplr 788 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝐴𝑁)
635, 62sseldi 3566 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝐴𝑋)
6413sselda 3568 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝑥𝑋)
658, 15, 50grpaddsubass 17328 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝑥𝑋𝐴𝑋)) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
6661, 63, 64, 63, 65syl13anc 1320 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
678, 15, 50grpnpcan 17330 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → ((𝑥 𝐴) + 𝐴) = 𝑥)
6861, 64, 63, 67syl3anc 1318 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝑥 𝐴) + 𝐴) = 𝑥)
69 simpr 476 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝑥𝑆)
7068, 69eqeltrd 2688 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝑥 𝐴) + 𝐴) ∈ 𝑆)
718, 50grpsubcl 17318 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → (𝑥 𝐴) ∈ 𝑋)
7261, 64, 63, 71syl3anc 1318 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → (𝑥 𝐴) ∈ 𝑋)
733nmzbi 17457 . . . . . . 7 ((𝐴𝑁 ∧ (𝑥 𝐴) ∈ 𝑋) → ((𝐴 + (𝑥 𝐴)) ∈ 𝑆 ↔ ((𝑥 𝐴) + 𝐴) ∈ 𝑆))
7462, 72, 73syl2anc 691 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝐴 + (𝑥 𝐴)) ∈ 𝑆 ↔ ((𝑥 𝐴) + 𝐴) ∈ 𝑆))
7570, 74mpbird 246 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → (𝐴 + (𝑥 𝐴)) ∈ 𝑆)
7666, 75eqeltrd 2688 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝐴 + 𝑥) 𝐴) ∈ 𝑆)
7776, 37fmptd 6292 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝐹:𝑆𝑆)
78 frn 5966 . . 3 (𝐹:𝑆𝑆 → ran 𝐹𝑆)
7977, 78syl 17 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → ran 𝐹𝑆)
8060, 79eqssd 3585 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  wss 3540  cmpt 4643  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246  -gcsg 17247  SubGrpcsubg 17411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414
This theorem is referenced by:  conjnmzb  17518  conjnsg  17519  sylow3lem2  17866
  Copyright terms: Public domain W3C validator