Step | Hyp | Ref
| Expression |
1 | | subgrcl 17422 |
. . . . . . . . . 10
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
2 | 1 | ad2antrr 758 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐺 ∈ Grp) |
3 | | conjnmz.1 |
. . . . . . . . . . . 12
⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} |
4 | | ssrab2 3650 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⊆ 𝑋 |
5 | 3, 4 | eqsstri 3598 |
. . . . . . . . . . 11
⊢ 𝑁 ⊆ 𝑋 |
6 | | simplr 788 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐴 ∈ 𝑁) |
7 | 5, 6 | sseldi 3566 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
8 | | conjghm.x |
. . . . . . . . . . 11
⊢ 𝑋 = (Base‘𝐺) |
9 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(invg‘𝐺) = (invg‘𝐺) |
10 | 8, 9 | grpinvcl 17290 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
11 | 2, 7, 10 | syl2anc 691 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
12 | 8 | subgss 17418 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
13 | 12 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 ⊆ 𝑋) |
14 | 13 | sselda 3568 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑋) |
15 | | conjghm.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝐺) |
16 | 8, 15 | grpass 17254 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) = (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) |
17 | 2, 11, 14, 7, 16 | syl13anc 1320 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) = (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) |
18 | | eqid 2610 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝐺) = (0g‘𝐺) |
19 | 8, 15, 18, 9 | grprinv 17292 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐴 +
((invg‘𝐺)‘𝐴)) = (0g‘𝐺)) |
20 | 2, 7, 19 | syl2anc 691 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
((invg‘𝐺)‘𝐴)) = (0g‘𝐺)) |
21 | 20 | oveq1d 6564 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + 𝑤) = ((0g‘𝐺) + 𝑤)) |
22 | 8, 15 | grpass 17254 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + 𝑤) = (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤))) |
23 | 2, 7, 11, 14, 22 | syl13anc 1320 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + 𝑤) = (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤))) |
24 | 8, 15, 18 | grplid 17275 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋) → ((0g‘𝐺) + 𝑤) = 𝑤) |
25 | 2, 14, 24 | syl2anc 691 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((0g‘𝐺) + 𝑤) = 𝑤) |
26 | 21, 23, 25 | 3eqtr3d 2652 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) = 𝑤) |
27 | | simpr 476 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑆) |
28 | 26, 27 | eqeltrd 2688 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆) |
29 | 8, 15 | grpcl 17253 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧
((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (((invg‘𝐺)‘𝐴) + 𝑤) ∈ 𝑋) |
30 | 2, 11, 14, 29 | syl3anc 1318 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (((invg‘𝐺)‘𝐴) + 𝑤) ∈ 𝑋) |
31 | 3 | nmzbi 17457 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑁 ∧ (((invg‘𝐺)‘𝐴) + 𝑤) ∈ 𝑋) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆)) |
32 | 6, 30, 31 | syl2anc 691 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆)) |
33 | 28, 32 | mpbid 221 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆) |
34 | 17, 33 | eqeltrrd 2689 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆) |
35 | | oveq2 6557 |
. . . . . . . . 9
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) → (𝐴 + 𝑥) = (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)))) |
36 | 35 | oveq1d 6564 |
. . . . . . . 8
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴)) |
37 | | conjsubg.f |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) |
38 | | ovex 6577 |
. . . . . . . 8
⊢ ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴) ∈ V |
39 | 36, 37, 38 | fvmpt 6191 |
. . . . . . 7
⊢
((((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆 → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴)) |
40 | 34, 39 | syl 17 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴)) |
41 | 20 | oveq1d 6564 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + (𝑤 + 𝐴)) = ((0g‘𝐺) + (𝑤 + 𝐴))) |
42 | 8, 15 | grpcl 17253 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑤 + 𝐴) ∈ 𝑋) |
43 | 2, 14, 7, 42 | syl3anc 1318 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝑤 + 𝐴) ∈ 𝑋) |
44 | 8, 15 | grpass 17254 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ (𝑤 + 𝐴) ∈ 𝑋)) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + (𝑤 + 𝐴)) = (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)))) |
45 | 2, 7, 11, 43, 44 | syl13anc 1320 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + (𝑤 + 𝐴)) = (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)))) |
46 | 8, 15, 18 | grplid 17275 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑤 + 𝐴) ∈ 𝑋) → ((0g‘𝐺) + (𝑤 + 𝐴)) = (𝑤 + 𝐴)) |
47 | 2, 43, 46 | syl2anc 691 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((0g‘𝐺) + (𝑤 + 𝐴)) = (𝑤 + 𝐴)) |
48 | 41, 45, 47 | 3eqtr3d 2652 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = (𝑤 + 𝐴)) |
49 | 48 | oveq1d 6564 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴) = ((𝑤 + 𝐴) − 𝐴)) |
50 | | conjghm.m |
. . . . . . . 8
⊢ − =
(-g‘𝐺) |
51 | 8, 15, 50 | grppncan 17329 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑤 + 𝐴) − 𝐴) = 𝑤) |
52 | 2, 14, 7, 51 | syl3anc 1318 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝑤 + 𝐴) − 𝐴) = 𝑤) |
53 | 40, 49, 52 | 3eqtrd 2648 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = 𝑤) |
54 | | ovex 6577 |
. . . . . . 7
⊢ ((𝐴 + 𝑥) − 𝐴) ∈ V |
55 | 54, 37 | fnmpti 5935 |
. . . . . 6
⊢ 𝐹 Fn 𝑆 |
56 | | fnfvelrn 6264 |
. . . . . 6
⊢ ((𝐹 Fn 𝑆 ∧ (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹) |
57 | 55, 34, 56 | sylancr 694 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹) |
58 | 53, 57 | eqeltrrd 2689 |
. . . 4
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ ran 𝐹) |
59 | 58 | ex 449 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → (𝑤 ∈ 𝑆 → 𝑤 ∈ ran 𝐹)) |
60 | 59 | ssrdv 3574 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 ⊆ ran 𝐹) |
61 | 1 | ad2antrr 758 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐺 ∈ Grp) |
62 | | simplr 788 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑁) |
63 | 5, 62 | sseldi 3566 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
64 | 13 | sselda 3568 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑋) |
65 | 8, 15, 50 | grpaddsubass 17328 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝑥) − 𝐴) = (𝐴 + (𝑥 − 𝐴))) |
66 | 61, 63, 64, 63, 65 | syl13anc 1320 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑥) − 𝐴) = (𝐴 + (𝑥 − 𝐴))) |
67 | 8, 15, 50 | grpnpcan 17330 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
68 | 61, 64, 63, 67 | syl3anc 1318 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
69 | | simpr 476 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
70 | 68, 69 | eqeltrd 2688 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆) |
71 | 8, 50 | grpsubcl 17318 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑥 − 𝐴) ∈ 𝑋) |
72 | 61, 64, 63, 71 | syl3anc 1318 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → (𝑥 − 𝐴) ∈ 𝑋) |
73 | 3 | nmzbi 17457 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑁 ∧ (𝑥 − 𝐴) ∈ 𝑋) → ((𝐴 + (𝑥 − 𝐴)) ∈ 𝑆 ↔ ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆)) |
74 | 62, 72, 73 | syl2anc 691 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + (𝑥 − 𝐴)) ∈ 𝑆 ↔ ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆)) |
75 | 70, 74 | mpbird 246 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → (𝐴 + (𝑥 − 𝐴)) ∈ 𝑆) |
76 | 66, 75 | eqeltrd 2688 |
. . . 4
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑆) |
77 | 76, 37 | fmptd 6292 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝐹:𝑆⟶𝑆) |
78 | | frn 5966 |
. . 3
⊢ (𝐹:𝑆⟶𝑆 → ran 𝐹 ⊆ 𝑆) |
79 | 77, 78 | syl 17 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → ran 𝐹 ⊆ 𝑆) |
80 | 60, 79 | eqssd 3585 |
1
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 = ran 𝐹) |