MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem2 Structured version   Visualization version   GIF version

Theorem sylow3lem2 17866
Description: Lemma for sylow3 17871, first part. The stabilizer of a given Sylow subgroup 𝐾 in the group action acting on all of 𝐺 is the normalizer NG(K). (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
sylow3lem2.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
Assertion
Ref Expression
sylow3lem2 (𝜑𝐻 = 𝑁)
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,   𝑢, ,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑢,𝐾,𝑥,𝑦,𝑧   𝑢,𝑁,𝑧   𝑢,𝑋,𝑥,𝑦,𝑧   𝑢,𝐺,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢, + ,𝑥,𝑦,𝑧   𝑢,𝑃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑢)   𝑁(𝑥,𝑦)

Proof of Theorem sylow3lem2
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3lem2.n . . . . 5 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
2 ssrab2 3650 . . . . 5 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)} ⊆ 𝑋
31, 2eqsstri 3598 . . . 4 𝑁𝑋
4 sseqin2 3779 . . . 4 (𝑁𝑋 ↔ (𝑋𝑁) = 𝑁)
53, 4mpbi 219 . . 3 (𝑋𝑁) = 𝑁
6 simpr 476 . . . . . . . 8 ((𝜑𝑢𝑋) → 𝑢𝑋)
7 sylow3lem2.k . . . . . . . . 9 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
87adantr 480 . . . . . . . 8 ((𝜑𝑢𝑋) → 𝐾 ∈ (𝑃 pSyl 𝐺))
9 mptexg 6389 . . . . . . . . 9 (𝐾 ∈ (𝑃 pSyl 𝐺) → (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
10 rnexg 6990 . . . . . . . . 9 ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
118, 9, 103syl 18 . . . . . . . 8 ((𝜑𝑢𝑋) → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
12 simpr 476 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑦 = 𝐾)
13 simpl 472 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑥 = 𝑢)
1413oveq1d 6564 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑥 + 𝑧) = (𝑢 + 𝑧))
1514, 13oveq12d 6567 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝐾) → ((𝑥 + 𝑧) 𝑥) = ((𝑢 + 𝑧) 𝑢))
1612, 15mpteq12dv 4663 . . . . . . . . . 10 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
1716rneqd 5274 . . . . . . . . 9 ((𝑥 = 𝑢𝑦 = 𝐾) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
18 sylow3lem1.m . . . . . . . . 9 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
1917, 18ovmpt2ga 6688 . . . . . . . 8 ((𝑢𝑋𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
206, 8, 11, 19syl3anc 1318 . . . . . . 7 ((𝜑𝑢𝑋) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
2120adantr 480 . . . . . 6 (((𝜑𝑢𝑋) ∧ 𝑢𝑁) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
22 slwsubg 17848 . . . . . . . . 9 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
237, 22syl 17 . . . . . . . 8 (𝜑𝐾 ∈ (SubGrp‘𝐺))
2423adantr 480 . . . . . . 7 ((𝜑𝑢𝑋) → 𝐾 ∈ (SubGrp‘𝐺))
25 sylow3.x . . . . . . . 8 𝑋 = (Base‘𝐺)
26 sylow3lem1.a . . . . . . . 8 + = (+g𝐺)
27 sylow3lem1.d . . . . . . . 8 = (-g𝐺)
28 eqid 2610 . . . . . . . 8 (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) = (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))
2925, 26, 27, 28, 1conjnmz 17517 . . . . . . 7 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑁) → 𝐾 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
3024, 29sylan 487 . . . . . 6 (((𝜑𝑢𝑋) ∧ 𝑢𝑁) → 𝐾 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
3121, 30eqtr4d 2647 . . . . 5 (((𝜑𝑢𝑋) ∧ 𝑢𝑁) → (𝑢 𝐾) = 𝐾)
32 simplr 788 . . . . . 6 (((𝜑𝑢𝑋) ∧ (𝑢 𝐾) = 𝐾) → 𝑢𝑋)
33 simprl 790 . . . . . . . . . . 11 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → (𝑢 𝐾) = 𝐾)
3420adantr 480 . . . . . . . . . . 11 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
3533, 34eqtr3d 2646 . . . . . . . . . 10 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → 𝐾 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
3635eleq2d 2673 . . . . . . . . 9 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
37 ovex 6577 . . . . . . . . . . . 12 (𝑢 + 𝑤) ∈ V
38 eqeq1 2614 . . . . . . . . . . . . 13 (𝑣 = (𝑢 + 𝑤) → (𝑣 = ((𝑢 + 𝑧) 𝑢) ↔ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢)))
3938rexbidv 3034 . . . . . . . . . . . 12 (𝑣 = (𝑢 + 𝑤) → (∃𝑧𝐾 𝑣 = ((𝑢 + 𝑧) 𝑢) ↔ ∃𝑧𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢)))
4028rnmpt 5292 . . . . . . . . . . . 12 ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) = {𝑣 ∣ ∃𝑧𝐾 𝑣 = ((𝑢 + 𝑧) 𝑢)}
4137, 39, 40elab2 3323 . . . . . . . . . . 11 ((𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ↔ ∃𝑧𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))
42 simprr 792 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))
43 sylow3.g . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 ∈ Grp)
4443ad3antrrr 762 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝐺 ∈ Grp)
45 simpllr 795 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝑢𝑋)
4625subgss 17418 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
4723, 46syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾𝑋)
4847ad3antrrr 762 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝐾𝑋)
49 simprl 790 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝑧𝐾)
5048, 49sseldd 3569 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝑧𝑋)
5125, 26, 27grpaddsubass 17328 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ (𝑢𝑋𝑧𝑋𝑢𝑋)) → ((𝑢 + 𝑧) 𝑢) = (𝑢 + (𝑧 𝑢)))
5244, 45, 50, 45, 51syl13anc 1320 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → ((𝑢 + 𝑧) 𝑢) = (𝑢 + (𝑧 𝑢)))
5342, 52eqtr2d 2645 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑢 + (𝑧 𝑢)) = (𝑢 + 𝑤))
5425, 27grpsubcl 17318 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝑢𝑋) → (𝑧 𝑢) ∈ 𝑋)
5544, 50, 45, 54syl3anc 1318 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑧 𝑢) ∈ 𝑋)
56 simplrr 797 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝑤𝑋)
5725, 26grplcan 17300 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ ((𝑧 𝑢) ∈ 𝑋𝑤𝑋𝑢𝑋)) → ((𝑢 + (𝑧 𝑢)) = (𝑢 + 𝑤) ↔ (𝑧 𝑢) = 𝑤))
5844, 55, 56, 45, 57syl13anc 1320 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → ((𝑢 + (𝑧 𝑢)) = (𝑢 + 𝑤) ↔ (𝑧 𝑢) = 𝑤))
5953, 58mpbid 221 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑧 𝑢) = 𝑤)
6025, 26, 27grpsubadd 17326 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑧𝑋𝑢𝑋𝑤𝑋)) → ((𝑧 𝑢) = 𝑤 ↔ (𝑤 + 𝑢) = 𝑧))
6144, 50, 45, 56, 60syl13anc 1320 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → ((𝑧 𝑢) = 𝑤 ↔ (𝑤 + 𝑢) = 𝑧))
6259, 61mpbid 221 . . . . . . . . . . . . 13 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑤 + 𝑢) = 𝑧)
6362, 49eqeltrd 2688 . . . . . . . . . . . 12 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑤 + 𝑢) ∈ 𝐾)
6463rexlimdvaa 3014 . . . . . . . . . . 11 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → (∃𝑧𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢) → (𝑤 + 𝑢) ∈ 𝐾))
6541, 64syl5bi 231 . . . . . . . . . 10 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) → (𝑤 + 𝑢) ∈ 𝐾))
66 simpr 476 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑤 + 𝑢) ∈ 𝐾)
67 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑤 + 𝑢) → (𝑢 + 𝑧) = (𝑢 + (𝑤 + 𝑢)))
6867oveq1d 6564 . . . . . . . . . . . . . . 15 (𝑧 = (𝑤 + 𝑢) → ((𝑢 + 𝑧) 𝑢) = ((𝑢 + (𝑤 + 𝑢)) 𝑢))
69 ovex 6577 . . . . . . . . . . . . . . 15 ((𝑢 + (𝑤 + 𝑢)) 𝑢) ∈ V
7068, 28, 69fvmpt 6191 . . . . . . . . . . . . . 14 ((𝑤 + 𝑢) ∈ 𝐾 → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) = ((𝑢 + (𝑤 + 𝑢)) 𝑢))
7166, 70syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) = ((𝑢 + (𝑤 + 𝑢)) 𝑢))
7243ad3antrrr 762 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝐺 ∈ Grp)
73 simpllr 795 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝑢𝑋)
74 simplrr 797 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝑤𝑋)
7525, 26grpass 17254 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑢𝑋𝑤𝑋𝑢𝑋)) → ((𝑢 + 𝑤) + 𝑢) = (𝑢 + (𝑤 + 𝑢)))
7672, 73, 74, 73, 75syl13anc 1320 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑢 + 𝑤) + 𝑢) = (𝑢 + (𝑤 + 𝑢)))
7776oveq1d 6564 . . . . . . . . . . . . 13 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (((𝑢 + 𝑤) + 𝑢) 𝑢) = ((𝑢 + (𝑤 + 𝑢)) 𝑢))
7825, 26grpcl 17253 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑤𝑋) → (𝑢 + 𝑤) ∈ 𝑋)
7972, 73, 74, 78syl3anc 1318 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑢 + 𝑤) ∈ 𝑋)
8025, 26, 27grppncan 17329 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑢 + 𝑤) ∈ 𝑋𝑢𝑋) → (((𝑢 + 𝑤) + 𝑢) 𝑢) = (𝑢 + 𝑤))
8172, 79, 73, 80syl3anc 1318 . . . . . . . . . . . . 13 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (((𝑢 + 𝑤) + 𝑢) 𝑢) = (𝑢 + 𝑤))
8271, 77, 813eqtr2d 2650 . . . . . . . . . . . 12 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) = (𝑢 + 𝑤))
83 ovex 6577 . . . . . . . . . . . . . 14 ((𝑢 + 𝑧) 𝑢) ∈ V
8483, 28fnmpti 5935 . . . . . . . . . . . . 13 (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) Fn 𝐾
85 fnfvelrn 6264 . . . . . . . . . . . . 13 (((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) Fn 𝐾 ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
8684, 66, 85sylancr 694 . . . . . . . . . . . 12 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
8782, 86eqeltrrd 2689 . . . . . . . . . . 11 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
8887ex 449 . . . . . . . . . 10 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑤 + 𝑢) ∈ 𝐾 → (𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
8965, 88impbid 201 . . . . . . . . 9 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ↔ (𝑤 + 𝑢) ∈ 𝐾))
9036, 89bitrd 267 . . . . . . . 8 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾))
9190anassrs 678 . . . . . . 7 ((((𝜑𝑢𝑋) ∧ (𝑢 𝐾) = 𝐾) ∧ 𝑤𝑋) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾))
9291ralrimiva 2949 . . . . . 6 (((𝜑𝑢𝑋) ∧ (𝑢 𝐾) = 𝐾) → ∀𝑤𝑋 ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾))
931elnmz 17456 . . . . . 6 (𝑢𝑁 ↔ (𝑢𝑋 ∧ ∀𝑤𝑋 ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾)))
9432, 92, 93sylanbrc 695 . . . . 5 (((𝜑𝑢𝑋) ∧ (𝑢 𝐾) = 𝐾) → 𝑢𝑁)
9531, 94impbida 873 . . . 4 ((𝜑𝑢𝑋) → (𝑢𝑁 ↔ (𝑢 𝐾) = 𝐾))
9695rabbi2dva 3783 . . 3 (𝜑 → (𝑋𝑁) = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾})
975, 96syl5eqr 2658 . 2 (𝜑𝑁 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾})
98 sylow3lem2.h . 2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
9997, 98syl6reqr 2663 1 (𝜑𝐻 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cin 3539  wss 3540  cmpt 4643  ran crn 5039   Fn wfn 5799  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  cprime 15223  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245  -gcsg 17247  SubGrpcsubg 17411   pSyl cslw 17770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-slw 17774
This theorem is referenced by:  sylow3lem3  17867
  Copyright terms: Public domain W3C validator