Step | Hyp | Ref
| Expression |
1 | | hpgid.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝐺) |
2 | | hpgid.i |
. . . . . . . 8
⊢ 𝐼 = (Itv‘𝐺) |
3 | | hpgid.l |
. . . . . . . 8
⊢ 𝐿 = (LineG‘𝐺) |
4 | | hpgid.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | 4 | ad3antrrr 762 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG) |
6 | | hpgid.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
7 | 6 | ad3antrrr 762 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ 𝑃) |
8 | | colopp.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
9 | 8 | ad3antrrr 762 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐵 ∈ 𝑃) |
10 | | eqid 2610 |
. . . . . . . . . 10
⊢
(dist‘𝐺) =
(dist‘𝐺) |
11 | | hpgid.o |
. . . . . . . . . 10
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
12 | | hpgid.d |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
13 | 12 | ad3antrrr 762 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐷 ∈ ran 𝐿) |
14 | | simpllr 795 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) |
15 | 14 | simpld 474 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴 ∈ 𝐷) |
16 | 14 | simprd 478 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐵 ∈ 𝐷) |
17 | | simplr 788 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ 𝐷) |
18 | | eleq1 2676 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑦 → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵))) |
19 | 18 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (¬
𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝑦) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵))) |
20 | | simpr 476 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐼𝐵)) |
21 | 17, 19, 20 | rspcedvd 3289 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
22 | 15, 16, 21 | jca31 555 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵))) |
23 | 1, 10, 2, 11, 6, 8 | islnopp 25431 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
24 | 23 | ad3antrrr 762 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
25 | 22, 24 | mpbird 246 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝑂𝐵) |
26 | 1, 10, 2, 11, 3, 13, 5, 7, 9,
25 | oppne3 25435 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ≠ 𝐵) |
27 | 1, 2, 3, 5, 7, 9, 26 | tgelrnln 25325 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿) |
28 | 1, 2, 3, 5, 7, 9, 26 | tglinerflx1 25328 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ (𝐴𝐿𝐵)) |
29 | 1, 10, 2, 11, 3, 13, 5, 7, 9,
25 | oppne1 25433 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴 ∈ 𝐷) |
30 | | nelne1 2878 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 ∈ 𝐷) → (𝐴𝐿𝐵) ≠ 𝐷) |
31 | 28, 29, 30 | syl2anc 691 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ≠ 𝐷) |
32 | 26 | neneqd 2787 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴 = 𝐵) |
33 | | colopp.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
34 | 33 | orcomd 402 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐶 ∈ (𝐴𝐿𝐵))) |
35 | 34 | ord 391 |
. . . . . . . . . . 11
⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐶 ∈ (𝐴𝐿𝐵))) |
36 | 35 | ad3antrrr 762 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴 = 𝐵 → 𝐶 ∈ (𝐴𝐿𝐵))) |
37 | 32, 36 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐿𝐵)) |
38 | | colopp.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ 𝐷) |
39 | 38 | ad3antrrr 762 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ 𝐷) |
40 | 37, 39 | elind 3760 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ ((𝐴𝐿𝐵) ∩ 𝐷)) |
41 | 1, 3, 2, 5, 13, 17 | tglnpt 25244 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ 𝑃) |
42 | 1, 2, 3, 5, 7, 9, 41, 26, 20 | btwnlng1 25314 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐿𝐵)) |
43 | 42, 17 | elind 3760 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ ((𝐴𝐿𝐵) ∩ 𝐷)) |
44 | 1, 2, 3, 5, 27, 13, 31, 40, 43 | tglineineq 25338 |
. . . . . . 7
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 = 𝑦) |
45 | 44, 20 | eqeltrd 2688 |
. . . . . 6
⊢ ((((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
46 | 45 | adantllr 751 |
. . . . 5
⊢
(((((𝜑 ∧ (¬
𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
47 | | simpr 476 |
. . . . . 6
⊢ (((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
48 | 18 | cbvrexv 3148 |
. . . . . 6
⊢
(∃𝑡 ∈
𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ ∃𝑦 ∈ 𝐷 𝑦 ∈ (𝐴𝐼𝐵)) |
49 | 47, 48 | sylib 207 |
. . . . 5
⊢ (((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑦 ∈ 𝐷 𝑦 ∈ (𝐴𝐼𝐵)) |
50 | 46, 49 | r19.29a 3060 |
. . . 4
⊢ (((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
51 | 38 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ 𝐷) |
52 | | simpr 476 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → 𝑡 = 𝐶) |
53 | 52 | eleq1d 2672 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵))) |
54 | | simpr 476 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
55 | 51, 53, 54 | rspcedvd 3289 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
56 | 55 | adantlr 747 |
. . . 4
⊢ (((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
57 | 50, 56 | impbida 873 |
. . 3
⊢ ((𝜑 ∧ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷)) → (∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵))) |
58 | 57 | pm5.32da 671 |
. 2
⊢ (𝜑 → (((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))) |
59 | | 3anrot 1036 |
. . . 4
⊢ ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ↔ (¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ (𝐴𝐼𝐵))) |
60 | | df-3an 1033 |
. . . 4
⊢ ((¬
𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))) |
61 | 59, 60 | bitri 263 |
. . 3
⊢ ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))) |
62 | 61 | a1i 11 |
. 2
⊢ (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))) |
63 | 58, 23, 62 | 3bitr4d 299 |
1
⊢ (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷))) |