MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colopp Structured version   Visualization version   GIF version

Theorem colopp 25461
Description: Opposite sides of a line for colinear points. Theorem 9.18 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
colopp.b (𝜑𝐵𝑃)
colopp.p (𝜑𝐶𝐷)
colopp.1 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
Assertion
Ref Expression
colopp (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝑡,𝐶   𝐿,𝑎,𝑏,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)

Proof of Theorem colopp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hpgid.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 hpgid.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 hpgid.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 hpgid.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 762 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 hpgid.a . . . . . . . . . 10 (𝜑𝐴𝑃)
76ad3antrrr 762 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
8 colopp.b . . . . . . . . . 10 (𝜑𝐵𝑃)
98ad3antrrr 762 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
10 eqid 2610 . . . . . . . . . 10 (dist‘𝐺) = (dist‘𝐺)
11 hpgid.o . . . . . . . . . 10 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
12 hpgid.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ran 𝐿)
1312ad3antrrr 762 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐷 ∈ ran 𝐿)
14 simpllr 795 . . . . . . . . . . . . 13 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷))
1514simpld 474 . . . . . . . . . . . 12 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴𝐷)
1614simprd 478 . . . . . . . . . . . 12 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐵𝐷)
17 simplr 788 . . . . . . . . . . . . 13 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦𝐷)
18 eleq1 2676 . . . . . . . . . . . . . 14 (𝑡 = 𝑦 → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵)))
1918adantl 481 . . . . . . . . . . . . 13 (((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝑦) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝑦 ∈ (𝐴𝐼𝐵)))
20 simpr 476 . . . . . . . . . . . . 13 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐼𝐵))
2117, 19, 20rspcedvd 3289 . . . . . . . . . . . 12 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
2215, 16, 21jca31 555 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)))
231, 10, 2, 11, 6, 8islnopp 25431 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
2423ad3antrrr 762 . . . . . . . . . . 11 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
2522, 24mpbird 246 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝑂𝐵)
261, 10, 2, 11, 3, 13, 5, 7, 9, 25oppne3 25435 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴𝐵)
271, 2, 3, 5, 7, 9, 26tgelrnln 25325 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
281, 2, 3, 5, 7, 9, 26tglinerflx1 25328 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ (𝐴𝐿𝐵))
291, 10, 2, 11, 3, 13, 5, 7, 9, 25oppne1 25433 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴𝐷)
30 nelne1 2878 . . . . . . . . 9 ((𝐴 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴𝐷) → (𝐴𝐿𝐵) ≠ 𝐷)
3128, 29, 30syl2anc 691 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (𝐴𝐿𝐵) ≠ 𝐷)
3226neneqd 2787 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → ¬ 𝐴 = 𝐵)
33 colopp.1 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
3433orcomd 402 . . . . . . . . . . . 12 (𝜑 → (𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3534ord 391 . . . . . . . . . . 11 (𝜑 → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3635ad3antrrr 762 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
3732, 36mpd 15 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐿𝐵))
38 colopp.p . . . . . . . . . 10 (𝜑𝐶𝐷)
3938ad3antrrr 762 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶𝐷)
4037, 39elind 3760 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ ((𝐴𝐿𝐵) ∩ 𝐷))
411, 3, 2, 5, 13, 17tglnpt 25244 . . . . . . . . . 10 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦𝑃)
421, 2, 3, 5, 7, 9, 41, 26, 20btwnlng1 25314 . . . . . . . . 9 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ (𝐴𝐿𝐵))
4342, 17elind 3760 . . . . . . . 8 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝑦 ∈ ((𝐴𝐿𝐵) ∩ 𝐷))
441, 2, 3, 5, 27, 13, 31, 40, 43tglineineq 25338 . . . . . . 7 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 = 𝑦)
4544, 20eqeltrd 2688 . . . . . 6 ((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
4645adantllr 751 . . . . 5 (((((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
47 simpr 476 . . . . . 6 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
4818cbvrexv 3148 . . . . . 6 (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ ∃𝑦𝐷 𝑦 ∈ (𝐴𝐼𝐵))
4947, 48sylib 207 . . . . 5 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → ∃𝑦𝐷 𝑦 ∈ (𝐴𝐼𝐵))
5046, 49r19.29a 3060 . . . 4 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
5138adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝐷)
52 simpr 476 . . . . . . 7 (((𝜑𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → 𝑡 = 𝐶)
5352eleq1d 2672 . . . . . 6 (((𝜑𝐶 ∈ (𝐴𝐼𝐵)) ∧ 𝑡 = 𝐶) → (𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵)))
54 simpr 476 . . . . . 6 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
5551, 53, 54rspcedvd 3289 . . . . 5 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
5655adantlr 747 . . . 4 (((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) ∧ 𝐶 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
5750, 56impbida 873 . . 3 ((𝜑 ∧ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)) → (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵) ↔ 𝐶 ∈ (𝐴𝐼𝐵)))
5857pm5.32da 671 . 2 (𝜑 → (((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))))
59 3anrot 1036 . . . 4 ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ (¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷𝐶 ∈ (𝐴𝐼𝐵)))
60 df-3an 1033 . . . 4 ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷𝐶 ∈ (𝐴𝐼𝐵)) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))
6159, 60bitri 263 . . 3 ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵)))
6261a1i 11 . 2 (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ 𝐶 ∈ (𝐴𝐼𝐵))))
6358, 23, 623bitr4d 299 1 (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  cdif 3537   class class class wbr 4583  {copab 4642  ran crn 5039  cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206
This theorem is referenced by:  colhp  25462
  Copyright terms: Public domain W3C validator