Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clwwlksext2edg Structured version   Visualization version   GIF version

Theorem clwwlksext2edg 41230
 Description: If a word concatenated with a vertex represents a closed walk in (in a graph), there is an edge between this vertex and the last vertex of the word, and between this vertex and the first vertex of the word. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 27-Apr-2021.)
Hypotheses
Ref Expression
clwwlksext2edg.v 𝑉 = (Vtx‘𝐺)
clwwlksext2edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlksext2edg (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalkSN 𝐺)) → ({( lastS ‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))

Proof of Theorem clwwlksext2edg
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwwlksext2edg.v . . . 4 𝑉 = (Vtx‘𝐺)
21clwwlknbp0 41192 . . 3 ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalkSN 𝐺) → ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ) ∧ ((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁)))
3 clwwlksext2edg.e . . . . . 6 𝐸 = (Edg‘𝐺)
41, 3isclwwlksnx 41197 . . . . 5 (𝑁 ∈ ℕ → ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalkSN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁)))
54ad2antlr 759 . . . 4 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ) ∧ ((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁)) → ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalkSN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁)))
6 ige2m2fzo 12398 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
763ad2ant3 1077 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
87adantr 480 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
9 oveq1 6556 . . . . . . . . . . . . . . . 16 ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1) = (𝑁 − 1))
109oveq2d 6565 . . . . . . . . . . . . . . 15 ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) = (0..^(𝑁 − 1)))
1110eleq2d 2673 . . . . . . . . . . . . . 14 ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑁 − 2) ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) ↔ (𝑁 − 2) ∈ (0..^(𝑁 − 1))))
1211adantl 481 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑁 − 2) ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) ↔ (𝑁 − 2) ∈ (0..^(𝑁 − 1))))
138, 12mpbird 246 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑁 − 2) ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)))
14 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑖 = (𝑁 − 2) → ((𝑊 ++ ⟨“𝑍”⟩)‘𝑖) = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)))
15 oveq1 6556 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑁 − 2) → (𝑖 + 1) = ((𝑁 − 2) + 1))
1615fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑖 = (𝑁 − 2) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1)))
1714, 16preq12d 4220 . . . . . . . . . . . . . 14 (𝑖 = (𝑁 − 2) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))})
1817eleq1d 2672 . . . . . . . . . . . . 13 (𝑖 = (𝑁 − 2) → ({((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸))
1918rspcv 3278 . . . . . . . . . . . 12 ((𝑁 − 2) ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) → (∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸))
2013, 19syl 17 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸))
21 ccatws1lenrev 13260 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝑍𝑉) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (#‘𝑊) = (𝑁 − 1)))
22213adant3 1074 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (#‘𝑊) = (𝑁 − 1)))
23 eluzelcn 11575 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
24 1cnd 9935 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℂ)
2523, 24, 24subsub4d 10302 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
26 1p1e2 11011 . . . . . . . . . . . . . . . . . . . . . . 23 (1 + 1) = 2
2726a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (1 + 1) = 2)
2827oveq2d 6565 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (𝑁 − (1 + 1)) = (𝑁 − 2))
2925, 28eqtr2d 2645 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) = ((𝑁 − 1) − 1))
30293ad2ant3 1077 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) = ((𝑁 − 1) − 1))
31 oveq1 6556 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑊) = (𝑁 − 1) → ((#‘𝑊) − 1) = ((𝑁 − 1) − 1))
3231eqcomd 2616 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑊) = (𝑁 − 1) → ((𝑁 − 1) − 1) = ((#‘𝑊) − 1))
3330, 32sylan9eq 2664 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → (𝑁 − 2) = ((#‘𝑊) − 1))
3433ex 449 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘𝑊) = (𝑁 − 1) → (𝑁 − 2) = ((#‘𝑊) − 1)))
3522, 34syld 46 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (𝑁 − 2) = ((#‘𝑊) − 1)))
3635imp 444 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑁 − 2) = ((#‘𝑊) − 1))
3736fveq2d 6107 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)) = ((𝑊 ++ ⟨“𝑍”⟩)‘((#‘𝑊) − 1)))
38 simpl1 1057 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 𝑊 ∈ Word 𝑉)
39 s1cl 13235 . . . . . . . . . . . . . . . . . . . . 21 (𝑍𝑉 → ⟨“𝑍”⟩ ∈ Word 𝑉)
40393ad2ant2 1076 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
4140adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
42 eluz2 11569 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
43 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
44 1red 9934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 ∈ ℝ)
45 2re 10967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 ∈ ℝ
4645a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 2 ∈ ℝ)
47 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℝ)
48 1lt2 11071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1 < 2
4948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 < 2)
50 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
5144, 46, 47, 49, 50ltletrd 10076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 < 𝑁)
52 1red 9934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℝ → 1 ∈ ℝ)
53 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
5452, 53posdifd 10493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℝ → (1 < 𝑁 ↔ 0 < (𝑁 − 1)))
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (1 < 𝑁 ↔ 0 < (𝑁 − 1)))
5651, 55mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 0 < (𝑁 − 1))
5756ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℝ → (2 ≤ 𝑁 → 0 < (𝑁 − 1)))
5843, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → 0 < (𝑁 − 1)))
5958a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → 0 < (𝑁 − 1))))
60593imp 1249 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 0 < (𝑁 − 1))
6142, 60sylbi 206 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 0 < (𝑁 − 1))
6261ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 0 < (𝑁 − 1))
63 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑊) = (𝑁 − 1) → (0 < (#‘𝑊) ↔ 0 < (𝑁 − 1)))
6463adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → (0 < (#‘𝑊) ↔ 0 < (𝑁 − 1)))
6562, 64mpbird 246 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 0 < (#‘𝑊))
66 hashneq0 13016 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑊 ∈ Word 𝑉 → (0 < (#‘𝑊) ↔ 𝑊 ≠ ∅))
6766adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) → (0 < (#‘𝑊) ↔ 𝑊 ≠ ∅))
6867adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → (0 < (#‘𝑊) ↔ 𝑊 ≠ ∅))
6965, 68mpbid 221 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 𝑊 ≠ ∅)
70693adantl2 1211 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 𝑊 ≠ ∅)
7138, 41, 703jca 1235 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅))
7271ex 449 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘𝑊) = (𝑁 − 1) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅)))
7322, 72syld 46 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅)))
7473imp 444 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅))
75 ccatval1lsw 13221 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“𝑍”⟩)‘((#‘𝑊) − 1)) = ( lastS ‘𝑊))
7674, 75syl 17 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘((#‘𝑊) − 1)) = ( lastS ‘𝑊))
7737, 76eqtrd 2644 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)) = ( lastS ‘𝑊))
78 2m1e1 11012 . . . . . . . . . . . . . . . . . . . . . . 23 (2 − 1) = 1
7978a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (2 − 1) = 1)
8079eqcomd 2616 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 1 = (2 − 1))
8180oveq2d 6565 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) = (𝑁 − (2 − 1)))
82 2cnd 10970 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
8323, 82, 24subsubd 10299 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
8481, 83eqtr2d 2645 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − 1))
85843ad2ant3 1077 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((𝑁 − 2) + 1) = (𝑁 − 1))
86 eqeq2 2621 . . . . . . . . . . . . . . . . . 18 ((#‘𝑊) = (𝑁 − 1) → (((𝑁 − 2) + 1) = (#‘𝑊) ↔ ((𝑁 − 2) + 1) = (𝑁 − 1)))
8785, 86syl5ibrcom 236 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘𝑊) = (𝑁 − 1) → ((𝑁 − 2) + 1) = (#‘𝑊)))
8822, 87syld 46 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑁 − 2) + 1) = (#‘𝑊)))
8988imp 444 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑁 − 2) + 1) = (#‘𝑊))
9089fveq2d 6107 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘(#‘𝑊)))
91 id 22 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉) → (𝑊 ∈ Word 𝑉𝑍𝑉))
92913adant3 1074 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ Word 𝑉𝑍𝑉))
9392adantr 480 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑊 ∈ Word 𝑉𝑍𝑉))
94 ccatws1ls 13262 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝑍𝑉) → ((𝑊 ++ ⟨“𝑍”⟩)‘(#‘𝑊)) = 𝑍)
9593, 94syl 17 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘(#‘𝑊)) = 𝑍)
9690, 95eqtrd 2644 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1)) = 𝑍)
9777, 96preq12d 4220 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} = {( lastS ‘𝑊), 𝑍})
9897eleq1d 2672 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ({((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸 ↔ {( lastS ‘𝑊), 𝑍} ∈ 𝐸))
9920, 98sylibd 228 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {( lastS ‘𝑊), 𝑍} ∈ 𝐸))
10099ex 449 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {( lastS ‘𝑊), 𝑍} ∈ 𝐸)))
101100com13 86 . . . . . . . 8 (∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → {( lastS ‘𝑊), 𝑍} ∈ 𝐸)))
1021013ad2ant2 1076 . . . . . . 7 (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → {( lastS ‘𝑊), 𝑍} ∈ 𝐸)))
103102imp31 447 . . . . . 6 (((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {( lastS ‘𝑊), 𝑍} ∈ 𝐸)
10492adantr 480 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → (𝑊 ∈ Word 𝑉𝑍𝑉))
105 lswccats1 13263 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝑍𝑉) → ( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
106104, 105syl 17 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → ( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
107613ad2ant3 1077 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → 0 < (𝑁 − 1))
108107adantr 480 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 0 < (𝑁 − 1))
10963adantl 481 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → (0 < (#‘𝑊) ↔ 0 < (𝑁 − 1)))
110108, 109mpbird 246 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → 0 < (#‘𝑊))
111 ccatfv0 13220 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉 ∧ 0 < (#‘𝑊)) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
11238, 41, 110, 111syl3anc 1318 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
113106, 112preq12d 4220 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (#‘𝑊) = (𝑁 − 1)) → {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)})
114113ex 449 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘𝑊) = (𝑁 − 1) → {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)}))
11522, 114syld 46 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)}))
116115impcom 445 . . . . . . . . . 10 (((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)})
117116eleq1d 2672 . . . . . . . . 9 (((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → ({( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸 ↔ {𝑍, (𝑊‘0)} ∈ 𝐸))
118117biimpcd 238 . . . . . . . 8 ({( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸 → (((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {𝑍, (𝑊‘0)} ∈ 𝐸))
1191183ad2ant3 1077 . . . . . . 7 (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) → (((#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {𝑍, (𝑊‘0)} ∈ 𝐸))
120119impl 648 . . . . . 6 (((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {𝑍, (𝑊‘0)} ∈ 𝐸)
121103, 120jca 553 . . . . 5 (((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → ({( lastS ‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))
122121ex 449 . . . 4 ((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ({( lastS ‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)))
1235, 122syl6bi 242 . . 3 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ) ∧ ((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ (#‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁)) → ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalkSN 𝐺) → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ({( lastS ‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))))
1242, 123mpcom 37 . 2 ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalkSN 𝐺) → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ({( lastS ‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)))
125124impcom 445 1 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalkSN 𝐺)) → ({( lastS ‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  Vcvv 3173  ∅c0 3874  {cpr 4127   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954   − cmin 10145  ℕcn 10897  2c2 10947  ℤcz 11254  ℤ≥cuz 11563  ..^cfzo 12334  #chash 12979  Word cword 13146   lastS clsw 13147   ++ cconcat 13148  ⟨“cs1 13149  Vtxcvtx 25673  Edgcedga 25792   ClWWalkSN cclwwlksn 41184 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-clwwlks 41185  df-clwwlksn 41186 This theorem is referenced by:  av-numclwwlk2lem1  41532
 Copyright terms: Public domain W3C validator