Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cayleyhamilton | Structured version Visualization version GIF version |
Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", see theorem 7.8 in [Roman] p. 170 (without proof!), or theorem 3.1 in [Lang] p. 561. In other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. This is Metamath 100 proof #49. (Contributed by Alexander van der Vekens, 25-Nov-2019.) |
Ref | Expression |
---|---|
cayleyhamilton.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cayleyhamilton.b | ⊢ 𝐵 = (Base‘𝐴) |
cayleyhamilton.0 | ⊢ 0 = (0g‘𝐴) |
cayleyhamilton.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
cayleyhamilton.k | ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) |
cayleyhamilton.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
cayleyhamilton.e | ⊢ ↑ = (.g‘(mulGrp‘𝐴)) |
Ref | Expression |
---|---|
cayleyhamilton | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cayleyhamilton.a | . 2 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | cayleyhamilton.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
3 | cayleyhamilton.0 | . 2 ⊢ 0 = (0g‘𝐴) | |
4 | eqid 2610 | . 2 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
5 | cayleyhamilton.m | . 2 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
6 | cayleyhamilton.e | . 2 ⊢ ↑ = (.g‘(mulGrp‘𝐴)) | |
7 | cayleyhamilton.c | . 2 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
8 | cayleyhamilton.k | . 2 ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) | |
9 | eqid 2610 | . 2 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
10 | eqid 2610 | . 2 ⊢ (𝑁 Mat (Poly1‘𝑅)) = (𝑁 Mat (Poly1‘𝑅)) | |
11 | eqid 2610 | . 2 ⊢ (.r‘(𝑁 Mat (Poly1‘𝑅))) = (.r‘(𝑁 Mat (Poly1‘𝑅))) | |
12 | eqid 2610 | . 2 ⊢ (-g‘(𝑁 Mat (Poly1‘𝑅))) = (-g‘(𝑁 Mat (Poly1‘𝑅))) | |
13 | eqid 2610 | . 2 ⊢ (0g‘(𝑁 Mat (Poly1‘𝑅))) = (0g‘(𝑁 Mat (Poly1‘𝑅))) | |
14 | eqid 2610 | . 2 ⊢ (Base‘(𝑁 Mat (Poly1‘𝑅))) = (Base‘(𝑁 Mat (Poly1‘𝑅))) | |
15 | eqid 2610 | . 2 ⊢ (.g‘(mulGrp‘(𝑁 Mat (Poly1‘𝑅)))) = (.g‘(mulGrp‘(𝑁 Mat (Poly1‘𝑅)))) | |
16 | eqid 2610 | . 2 ⊢ (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅) | |
17 | eqeq1 2614 | . . . 4 ⊢ (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0)) | |
18 | eqeq1 2614 | . . . . 5 ⊢ (𝑙 = 𝑛 → (𝑙 = (𝑥 + 1) ↔ 𝑛 = (𝑥 + 1))) | |
19 | breq2 4587 | . . . . . 6 ⊢ (𝑙 = 𝑛 → ((𝑥 + 1) < 𝑙 ↔ (𝑥 + 1) < 𝑛)) | |
20 | oveq1 6556 | . . . . . . . . 9 ⊢ (𝑙 = 𝑛 → (𝑙 − 1) = (𝑛 − 1)) | |
21 | 20 | fveq2d 6107 | . . . . . . . 8 ⊢ (𝑙 = 𝑛 → (𝑦‘(𝑙 − 1)) = (𝑦‘(𝑛 − 1))) |
22 | 21 | fveq2d 6107 | . . . . . . 7 ⊢ (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1))) = ((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))) |
23 | fveq2 6103 | . . . . . . . . 9 ⊢ (𝑙 = 𝑛 → (𝑦‘𝑙) = (𝑦‘𝑛)) | |
24 | 23 | fveq2d 6107 | . . . . . . . 8 ⊢ (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)) = ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))) |
25 | 24 | oveq2d 6565 | . . . . . . 7 ⊢ (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))) = (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))) |
26 | 22, 25 | oveq12d 6567 | . . . . . 6 ⊢ (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))) = (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))))) |
27 | 19, 26 | ifbieq2d 4061 | . . . . 5 ⊢ (𝑙 = 𝑛 → if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))))) = if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))) |
28 | 18, 27 | ifbieq2d 4061 | . . . 4 ⊢ (𝑙 = 𝑛 → if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))))) = if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))))))) |
29 | 17, 28 | ifbieq2d 4061 | . . 3 ⊢ (𝑙 = 𝑛 → if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))))))) = if(𝑛 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))))) |
30 | 29 | cbvmptv 4678 | . 2 ⊢ (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))))))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))))) |
31 | eqid 2610 | . 2 ⊢ (𝑁 cPolyMatToMat 𝑅) = (𝑁 cPolyMatToMat 𝑅) | |
32 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31 | cayleyhamilton0 20513 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ifcif 4036 class class class wbr 4583 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 Fincfn 7841 0cc0 9815 1c1 9816 + caddc 9818 < clt 9953 − cmin 10145 ℕ0cn0 11169 Basecbs 15695 .rcmulr 15769 ·𝑠 cvsca 15772 0gc0g 15923 Σg cgsu 15924 -gcsg 17247 .gcmg 17363 mulGrpcmgp 18312 1rcur 18324 CRingccrg 18371 Poly1cpl1 19368 coe1cco1 19369 Mat cmat 20032 matToPolyMat cmat2pmat 20328 cPolyMatToMat ccpmat2mat 20329 CharPlyMat cchpmat 20450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-xor 1457 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-ot 4134 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-ofr 6796 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-tpos 7239 df-cur 7280 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-sup 8231 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-xnn0 11241 df-z 11255 df-dec 11370 df-uz 11564 df-rp 11709 df-fz 12198 df-fzo 12335 df-seq 12664 df-exp 12723 df-hash 12980 df-word 13154 df-lsw 13155 df-concat 13156 df-s1 13157 df-substr 13158 df-splice 13159 df-reverse 13160 df-s2 13444 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-starv 15783 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-hom 15793 df-cco 15794 df-0g 15925 df-gsum 15926 df-prds 15931 df-pws 15933 df-mre 16069 df-mrc 16070 df-acs 16072 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-submnd 17159 df-grp 17248 df-minusg 17249 df-sbg 17250 df-mulg 17364 df-subg 17414 df-ghm 17481 df-gim 17524 df-cntz 17573 df-oppg 17599 df-symg 17621 df-pmtr 17685 df-psgn 17734 df-evpm 17735 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-srg 18329 df-ring 18372 df-cring 18373 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-dvr 18506 df-rnghom 18538 df-drng 18572 df-subrg 18601 df-lmod 18688 df-lss 18754 df-sra 18993 df-rgmod 18994 df-assa 19133 df-ascl 19135 df-psr 19177 df-mvr 19178 df-mpl 19179 df-opsr 19181 df-psr1 19371 df-vr1 19372 df-ply1 19373 df-coe1 19374 df-cnfld 19568 df-zring 19638 df-zrh 19671 df-dsmm 19895 df-frlm 19910 df-mamu 20009 df-mat 20033 df-mdet 20210 df-madu 20259 df-cpmat 20330 df-mat2pmat 20331 df-cpmat2mat 20332 df-decpmat 20387 df-pm2mp 20417 df-chpmat 20451 |
This theorem is referenced by: cayleyhamilton1 20516 |
Copyright terms: Public domain | W3C validator |