Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspss Structured version   Visualization version   GIF version

Theorem aspss 19153
 Description: Span preserves subset ordering. (spanss 27591 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
aspval.a 𝐴 = (AlgSpan‘𝑊)
aspval.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
aspss ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → (𝐴𝑇) ⊆ (𝐴𝑆))

Proof of Theorem aspss
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simpl3 1059 . . . . 5 (((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) ∧ 𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊))) → 𝑇𝑆)
2 sstr2 3575 . . . . 5 (𝑇𝑆 → (𝑆𝑡𝑇𝑡))
31, 2syl 17 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) ∧ 𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊))) → (𝑆𝑡𝑇𝑡))
43ss2rabdv 3646 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡} ⊆ {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡})
5 intss 4433 . . 3 ({𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡} ⊆ {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡} → {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡})
64, 5syl 17 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡})
7 simp1 1054 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → 𝑊 ∈ AssAlg)
8 simp3 1056 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → 𝑇𝑆)
9 simp2 1055 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → 𝑆𝑉)
108, 9sstrd 3578 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → 𝑇𝑉)
11 aspval.a . . . 4 𝐴 = (AlgSpan‘𝑊)
12 aspval.v . . . 4 𝑉 = (Base‘𝑊)
13 eqid 2610 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1411, 12, 13aspval 19149 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑇𝑉) → (𝐴𝑇) = {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡})
157, 10, 14syl2anc 691 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → (𝐴𝑇) = {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑇𝑡})
1611, 12, 13aspval 19149 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡})
17163adant3 1074 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ (LSubSp‘𝑊)) ∣ 𝑆𝑡})
186, 15, 173sstr4d 3611 1 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆) → (𝐴𝑇) ⊆ (𝐴𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900   ∩ cin 3539   ⊆ wss 3540  ∩ cint 4410  ‘cfv 5804  Basecbs 15695  SubRingcsubrg 18599  LSubSpclss 18753  AssAlgcasa 19130  AlgSpancasp 19131 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-assa 19133  df-asp 19134 This theorem is referenced by:  mplbas2  19291  mplind  19323
 Copyright terms: Public domain W3C validator