Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  31wlkdlem4 Structured version   Visualization version   GIF version

Theorem 31wlkdlem4 41329
Description: Lemma 4 for 31wlkd 41337. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
31wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
31wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
31wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
Assertion
Ref Expression
31wlkdlem4 (𝜑 → ∀𝑘 ∈ (0...(#‘𝐹))(𝑃𝑘) ∈ 𝑉)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐽   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝐹   𝑃,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem 31wlkdlem4
StepHypRef Expression
1 31wlkd.s . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
2 31wlkd.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3 31wlkd.f . . . 4 𝐹 = ⟨“𝐽𝐾𝐿”⟩
42, 3, 131wlkdlem3 41328 . . 3 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
5 simpl 472 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
65eleq1d 2672 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ 𝑉𝐴𝑉))
7 simpr 476 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
87eleq1d 2672 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ 𝑉𝐵𝑉))
96, 8anbi12d 743 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉) ↔ (𝐴𝑉𝐵𝑉)))
109biimparc 503 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉))
11 c0ex 9913 . . . . . . . 8 0 ∈ V
12 1ex 9914 . . . . . . . 8 1 ∈ V
1311, 12pm3.2i 470 . . . . . . 7 (0 ∈ V ∧ 1 ∈ V)
14 fveq2 6103 . . . . . . . . 9 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
1514eleq1d 2672 . . . . . . . 8 (𝑘 = 0 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘0) ∈ 𝑉))
16 fveq2 6103 . . . . . . . . 9 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
1716eleq1d 2672 . . . . . . . 8 (𝑘 = 1 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘1) ∈ 𝑉))
1815, 17ralprg 4181 . . . . . . 7 ((0 ∈ V ∧ 1 ∈ V) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉)))
1913, 18mp1i 13 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉)))
2010, 19mpbird 246 . . . . 5 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉)
2120ex 449 . . . 4 ((𝐴𝑉𝐵𝑉) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉))
22 simpl 472 . . . . . . . . 9 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘2) = 𝐶)
2322eleq1d 2672 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ 𝑉𝐶𝑉))
24 simpr 476 . . . . . . . . 9 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘3) = 𝐷)
2524eleq1d 2672 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘3) ∈ 𝑉𝐷𝑉))
2623, 25anbi12d 743 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉) ↔ (𝐶𝑉𝐷𝑉)))
2726biimparc 503 . . . . . 6 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉))
28 2ex 10969 . . . . . . . 8 2 ∈ V
29 3ex 10973 . . . . . . . 8 3 ∈ V
3028, 29pm3.2i 470 . . . . . . 7 (2 ∈ V ∧ 3 ∈ V)
31 fveq2 6103 . . . . . . . . 9 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
3231eleq1d 2672 . . . . . . . 8 (𝑘 = 2 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘2) ∈ 𝑉))
33 fveq2 6103 . . . . . . . . 9 (𝑘 = 3 → (𝑃𝑘) = (𝑃‘3))
3433eleq1d 2672 . . . . . . . 8 (𝑘 = 3 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘3) ∈ 𝑉))
3532, 34ralprg 4181 . . . . . . 7 ((2 ∈ V ∧ 3 ∈ V) → (∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉)))
3630, 35mp1i 13 . . . . . 6 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉)))
3727, 36mpbird 246 . . . . 5 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉)
3837ex 449 . . . 4 ((𝐶𝑉𝐷𝑉) → (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
3921, 38im2anan9 876 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉)))
401, 4, 39sylc 63 . 2 (𝜑 → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
413fveq2i 6106 . . . . . . 7 (#‘𝐹) = (#‘⟨“𝐽𝐾𝐿”⟩)
42 s3len 13489 . . . . . . 7 (#‘⟨“𝐽𝐾𝐿”⟩) = 3
4341, 42eqtri 2632 . . . . . 6 (#‘𝐹) = 3
4443oveq2i 6560 . . . . 5 (0...(#‘𝐹)) = (0...3)
45 fz0to3un2pr 12310 . . . . 5 (0...3) = ({0, 1} ∪ {2, 3})
4644, 45eqtri 2632 . . . 4 (0...(#‘𝐹)) = ({0, 1} ∪ {2, 3})
4746raleqi 3119 . . 3 (∀𝑘 ∈ (0...(#‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ ∀𝑘 ∈ ({0, 1} ∪ {2, 3})(𝑃𝑘) ∈ 𝑉)
48 ralunb 3756 . . 3 (∀𝑘 ∈ ({0, 1} ∪ {2, 3})(𝑃𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
4947, 48bitri 263 . 2 (∀𝑘 ∈ (0...(#‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
5040, 49sylibr 223 1 (𝜑 → ∀𝑘 ∈ (0...(#‘𝐹))(𝑃𝑘) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cun 3538  {cpr 4127  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  2c2 10947  3c3 10948  ...cfz 12197  #chash 12979  ⟨“cs3 13438  ⟨“cs4 13439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-s4 13446
This theorem is referenced by:  31wlkd  41337
  Copyright terms: Public domain W3C validator