Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  im2anan9 Structured version   Visualization version   GIF version

Theorem im2anan9 876
 Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
im2an9.1 (𝜑 → (𝜓𝜒))
im2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
im2anan9 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))

Proof of Theorem im2anan9
StepHypRef Expression
1 im2an9.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 480 . 2 ((𝜑𝜃) → (𝜓𝜒))
3 im2an9.2 . . 3 (𝜃 → (𝜏𝜂))
43adantl 481 . 2 ((𝜑𝜃) → (𝜏𝜂))
52, 4anim12d 584 1 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385 This theorem is referenced by:  im2anan9r  877  trin  4691  somo  4993  xpss12  5148  f1oun  6069  poxp  7176  soxp  7177  brecop  7727  ingru  9516  genpss  9705  genpnnp  9706  tgcl  20584  txlm  21261  icorempt2  32375  ax12eq  33244  ax12el  33245  31wlkdlem4  41329
 Copyright terms: Public domain W3C validator