Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2exp5 | Structured version Visualization version GIF version |
Description: Two to the fifth power is 32. (Contributed by AV, 16-Aug-2021.) |
Ref | Expression |
---|---|
2exp5 | ⊢ (2↑5) = ;32 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3p2e5 11037 | . . . . 5 ⊢ (3 + 2) = 5 | |
2 | 1 | eqcomi 2619 | . . . 4 ⊢ 5 = (3 + 2) |
3 | 2 | oveq2i 6560 | . . 3 ⊢ (2↑5) = (2↑(3 + 2)) |
4 | 2cn 10968 | . . . . 5 ⊢ 2 ∈ ℂ | |
5 | 3nn0 11187 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
6 | 2nn0 11186 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | expadd 12764 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (2↑(3 + 2)) = ((2↑3) · (2↑2))) | |
8 | 4, 5, 6, 7 | mp3an 1416 | . . . 4 ⊢ (2↑(3 + 2)) = ((2↑3) · (2↑2)) |
9 | cu2 12825 | . . . . 5 ⊢ (2↑3) = 8 | |
10 | sq2 12822 | . . . . 5 ⊢ (2↑2) = 4 | |
11 | 9, 10 | oveq12i 6561 | . . . 4 ⊢ ((2↑3) · (2↑2)) = (8 · 4) |
12 | 8, 11 | eqtri 2632 | . . 3 ⊢ (2↑(3 + 2)) = (8 · 4) |
13 | 3, 12 | eqtri 2632 | . 2 ⊢ (2↑5) = (8 · 4) |
14 | 8t4e32 11532 | . 2 ⊢ (8 · 4) = ;32 | |
15 | 13, 14 | eqtri 2632 | 1 ⊢ (2↑5) = ;32 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 (class class class)co 6549 ℂcc 9813 + caddc 9818 · cmul 9820 2c2 10947 3c3 10948 4c4 10949 5c5 10950 8c8 10953 ℕ0cn0 11169 ;cdc 11369 ↑cexp 12722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-seq 12664 df-exp 12723 |
This theorem is referenced by: m5prm 40051 |
Copyright terms: Public domain | W3C validator |