Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1pthoncl | Structured version Visualization version GIF version |
Description: A path of length 1 from one vertex to another vertex. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
Ref | Expression |
---|---|
1pthoncl | ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐼 ∈ V ∧ (𝐸‘𝐼) = {𝐴, 𝐵})) → {〈0, 𝐼〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6103 | . . . . . . . . . . . 12 ⊢ (𝑖 = 𝐼 → (𝐸‘𝑖) = (𝐸‘𝐼)) | |
2 | 1 | eqeq1d 2612 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝐼 → ((𝐸‘𝑖) = {𝐴, 𝐵} ↔ (𝐸‘𝐼) = {𝐴, 𝐵})) |
3 | 2 | 3anbi3d 1397 | . . . . . . . . . 10 ⊢ (𝑖 = 𝐼 → (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐸‘𝑖) = {𝐴, 𝐵}) ↔ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐸‘𝐼) = {𝐴, 𝐵}))) |
4 | opeq2 4341 | . . . . . . . . . . . 12 ⊢ (𝑖 = 𝐼 → 〈0, 𝑖〉 = 〈0, 𝐼〉) | |
5 | 4 | sneqd 4137 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝐼 → {〈0, 𝑖〉} = {〈0, 𝐼〉}) |
6 | 5 | breq1d 4593 | . . . . . . . . . 10 ⊢ (𝑖 = 𝐼 → ({〈0, 𝑖〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉} ↔ {〈0, 𝐼〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉})) |
7 | 3, 6 | imbi12d 333 | . . . . . . . . 9 ⊢ (𝑖 = 𝐼 → ((((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐸‘𝑖) = {𝐴, 𝐵}) → {〈0, 𝑖〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉}) ↔ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐸‘𝐼) = {𝐴, 𝐵}) → {〈0, 𝐼〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉}))) |
8 | 1pthon 26121 | . . . . . . . . 9 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐸‘𝑖) = {𝐴, 𝐵}) → {〈0, 𝑖〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉}) | |
9 | 7, 8 | vtoclg 3239 | . . . . . . . 8 ⊢ (𝐼 ∈ V → (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐸‘𝐼) = {𝐴, 𝐵}) → {〈0, 𝐼〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉})) |
10 | 9 | com12 32 | . . . . . . 7 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐸‘𝐼) = {𝐴, 𝐵}) → (𝐼 ∈ V → {〈0, 𝐼〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉})) |
11 | 10 | 3exp 1256 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐸‘𝐼) = {𝐴, 𝐵} → (𝐼 ∈ V → {〈0, 𝐼〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉})))) |
12 | 11 | com23 84 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((𝐸‘𝐼) = {𝐴, 𝐵} → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐼 ∈ V → {〈0, 𝐼〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉})))) |
13 | 12 | com14 94 | . . . 4 ⊢ (𝐼 ∈ V → ((𝐸‘𝐼) = {𝐴, 𝐵} → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → {〈0, 𝐼〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉})))) |
14 | 13 | imp 444 | . . 3 ⊢ ((𝐼 ∈ V ∧ (𝐸‘𝐼) = {𝐴, 𝐵}) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → {〈0, 𝐼〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉}))) |
15 | 14 | com13 86 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐼 ∈ V ∧ (𝐸‘𝐼) = {𝐴, 𝐵}) → {〈0, 𝐼〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉}))) |
16 | 15 | 3imp 1249 | 1 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐼 ∈ V ∧ (𝐸‘𝐼) = {𝐴, 𝐵})) → {〈0, 𝐼〉} (𝐴(𝑉 PathOn 𝐸)𝐵){〈0, 𝐴〉, 〈1, 𝐵〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 Vcvv 3173 {csn 4125 {cpr 4127 〈cop 4131 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 0cc0 9815 1c1 9816 PathOn cpthon 26032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-wlk 26036 df-trail 26037 df-pth 26038 df-wlkon 26042 df-pthon 26044 |
This theorem is referenced by: 1pthon2v 26123 |
Copyright terms: Public domain | W3C validator |