Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetresbl Structured version   Visualization version   GIF version

Theorem xmetresbl 22052
 Description: An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec 22049, this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance +∞ from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypothesis
Ref Expression
xmetresbl.1 𝐵 = (𝑃(ball‘𝐷)𝑅)
Assertion
Ref Expression
xmetresbl ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵))

Proof of Theorem xmetresbl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1054 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐷 ∈ (∞Met‘𝑋))
2 xmetresbl.1 . . . 4 𝐵 = (𝑃(ball‘𝐷)𝑅)
3 blssm 22033 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
42, 3syl5eqss 3612 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐵𝑋)
5 xmetres2 21976 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
61, 4, 5syl2anc 691 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
7 xmetf 21944 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
81, 7syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
9 xpss12 5148 . . . . . 6 ((𝐵𝑋𝐵𝑋) → (𝐵 × 𝐵) ⊆ (𝑋 × 𝑋))
104, 4, 9syl2anc 691 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐵 × 𝐵) ⊆ (𝑋 × 𝑋))
118, 10fssresd 5984 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ*)
12 ffn 5958 . . . 4 ((𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ* → (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
1311, 12syl 17 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
14 ovres 6698 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) = (𝑥𝐷𝑦))
1514adantl 481 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) = (𝑥𝐷𝑦))
16 simpl1 1057 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ (∞Met‘𝑋))
17 eqid 2610 . . . . . . . . . 10 (𝐷 “ ℝ) = (𝐷 “ ℝ)
1817xmeter 22048 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 “ ℝ) Er 𝑋)
1916, 18syl 17 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝐷 “ ℝ) Er 𝑋)
2017blssec 22050 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
212, 20syl5eqss 3612 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐵 ⊆ [𝑃](𝐷 “ ℝ))
2221sselda 3568 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝐵) → 𝑥 ∈ [𝑃](𝐷 “ ℝ))
2322adantrr 749 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ [𝑃](𝐷 “ ℝ))
24 simpl2 1058 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃𝑋)
25 elecg 7672 . . . . . . . . . 10 ((𝑥 ∈ [𝑃](𝐷 “ ℝ) ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
2623, 24, 25syl2anc 691 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
2723, 26mpbid 221 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃(𝐷 “ ℝ)𝑥)
2821sselda 3568 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦𝐵) → 𝑦 ∈ [𝑃](𝐷 “ ℝ))
2928adantrl 748 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ [𝑃](𝐷 “ ℝ))
30 elecg 7672 . . . . . . . . . 10 ((𝑦 ∈ [𝑃](𝐷 “ ℝ) ∧ 𝑃𝑋) → (𝑦 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑦))
3129, 24, 30syl2anc 691 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑦))
3229, 31mpbid 221 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃(𝐷 “ ℝ)𝑦)
3319, 27, 32ertr3d 7647 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥(𝐷 “ ℝ)𝑦)
3417xmeterval 22047 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝑥(𝐷 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)))
3516, 34syl 17 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝐷 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)))
3633, 35mpbid 221 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ))
3736simp3d 1068 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐷𝑦) ∈ ℝ)
3815, 37eqeltrd 2688 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) ∈ ℝ)
3938ralrimivva 2954 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ∀𝑥𝐵𝑦𝐵 (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) ∈ ℝ)
40 ffnov 6662 . . 3 ((𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ ↔ ((𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) ∈ ℝ))
4113, 39, 40sylanbrc 695 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ)
42 ismet2 21948 . 2 ((𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵) ↔ ((𝐷 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵) ∧ (𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ))
436, 41, 42sylanbrc 695 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ⊆ wss 3540   class class class wbr 4583   × cxp 5036  ◡ccnv 5037   ↾ cres 5040   “ cima 5041   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   Er wer 7626  [cec 7627  ℝcr 9814  ℝ*cxr 9952  ∞Metcxmt 19552  Metcme 19553  ballcbl 19554 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-ec 7631  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator