MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winalim2 Structured version   Visualization version   GIF version

Theorem winalim2 9397
Description: A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winalim2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem winalim2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 winacard 9393 . . . 4 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
2 winainf 9395 . . . . 5 (𝐴 ∈ Inaccw → ω ⊆ 𝐴)
3 cardalephex 8796 . . . . 5 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
42, 3syl 17 . . . 4 (𝐴 ∈ Inaccw → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
51, 4mpbid 221 . . 3 (𝐴 ∈ Inaccw → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
65adantr 480 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
7 df-rex 2902 . . 3 (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) ↔ ∃𝑥(𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)))
8 simprr 792 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝐴 = (ℵ‘𝑥))
98eqcomd 2616 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (ℵ‘𝑥) = 𝐴)
10 simprl 790 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝑥 ∈ On)
11 onzsl 6938 . . . . . . . 8 (𝑥 ∈ On ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)))
1210, 11sylib 207 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)))
13 simplr 788 . . . . . . . . . 10 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝐴 ≠ ω)
14 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
15 aleph0 8772 . . . . . . . . . . . . . 14 (ℵ‘∅) = ω
1614, 15syl6eq 2660 . . . . . . . . . . . . 13 (𝑥 = ∅ → (ℵ‘𝑥) = ω)
17 eqtr 2629 . . . . . . . . . . . . 13 ((𝐴 = (ℵ‘𝑥) ∧ (ℵ‘𝑥) = ω) → 𝐴 = ω)
1816, 17sylan2 490 . . . . . . . . . . . 12 ((𝐴 = (ℵ‘𝑥) ∧ 𝑥 = ∅) → 𝐴 = ω)
1918ex 449 . . . . . . . . . . 11 (𝐴 = (ℵ‘𝑥) → (𝑥 = ∅ → 𝐴 = ω))
2019necon3ad 2795 . . . . . . . . . 10 (𝐴 = (ℵ‘𝑥) → (𝐴 ≠ ω → ¬ 𝑥 = ∅))
218, 13, 20sylc 63 . . . . . . . . 9 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ¬ 𝑥 = ∅)
2221pm2.21d 117 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (𝑥 = ∅ → Lim 𝑥))
23 suceloni 6905 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → suc 𝑦 ∈ On)
24 vex 3176 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
2524sucid 5721 . . . . . . . . . . . . . . . 16 𝑦 ∈ suc 𝑦
26 alephord2i 8783 . . . . . . . . . . . . . . . 16 (suc 𝑦 ∈ On → (𝑦 ∈ suc 𝑦 → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦)))
2723, 25, 26mpisyl 21 . . . . . . . . . . . . . . 15 (𝑦 ∈ On → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦))
2827ad2antrl 760 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦))
29 simplrr 797 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → 𝐴 = (ℵ‘𝑥))
30 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
3130ad2antll 761 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
3229, 31eqtrd 2644 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → 𝐴 = (ℵ‘suc 𝑦))
3328, 32eleqtrrd 2691 . . . . . . . . . . . . 13 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑦) ∈ 𝐴)
34 elwina 9387 . . . . . . . . . . . . . . 15 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))
3534simp3bi 1071 . . . . . . . . . . . . . 14 (𝐴 ∈ Inaccw → ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
3635ad3antrrr 762 . . . . . . . . . . . . 13 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
37 breq1 4586 . . . . . . . . . . . . . . 15 (𝑧 = (ℵ‘𝑦) → (𝑧𝑤 ↔ (ℵ‘𝑦) ≺ 𝑤))
3837rexbidv 3034 . . . . . . . . . . . . . 14 (𝑧 = (ℵ‘𝑦) → (∃𝑤𝐴 𝑧𝑤 ↔ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
3938rspcva 3280 . . . . . . . . . . . . 13 (((ℵ‘𝑦) ∈ 𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤) → ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤)
4033, 36, 39syl2anc 691 . . . . . . . . . . . 12 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤)
4140expr 641 . . . . . . . . . . 11 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → (𝑥 = suc 𝑦 → ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
42 iscard 8684 . . . . . . . . . . . . . . . . . . 19 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑤𝐴 𝑤𝐴))
4342simprbi 479 . . . . . . . . . . . . . . . . . 18 ((card‘𝐴) = 𝐴 → ∀𝑤𝐴 𝑤𝐴)
44 rsp 2913 . . . . . . . . . . . . . . . . . 18 (∀𝑤𝐴 𝑤𝐴 → (𝑤𝐴𝑤𝐴))
451, 43, 443syl 18 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inaccw → (𝑤𝐴𝑤𝐴))
4645ad3antrrr 762 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤𝐴))
4732breq2d 4595 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤 ≺ (ℵ‘suc 𝑦)))
4846, 47sylibd 228 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤 ≺ (ℵ‘suc 𝑦)))
49 alephnbtwn2 8778 . . . . . . . . . . . . . . . 16 ¬ ((ℵ‘𝑦) ≺ 𝑤𝑤 ≺ (ℵ‘suc 𝑦))
50 pm3.21 463 . . . . . . . . . . . . . . . 16 (𝑤 ≺ (ℵ‘suc 𝑦) → ((ℵ‘𝑦) ≺ 𝑤 → ((ℵ‘𝑦) ≺ 𝑤𝑤 ≺ (ℵ‘suc 𝑦))))
5149, 50mtoi 189 . . . . . . . . . . . . . . 15 (𝑤 ≺ (ℵ‘suc 𝑦) → ¬ (ℵ‘𝑦) ≺ 𝑤)
5248, 51syl6 34 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴 → ¬ (ℵ‘𝑦) ≺ 𝑤))
5352imp 444 . . . . . . . . . . . . 13 (((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) ∧ 𝑤𝐴) → ¬ (ℵ‘𝑦) ≺ 𝑤)
5453nrexdv 2984 . . . . . . . . . . . 12 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ¬ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤)
5554expr 641 . . . . . . . . . . 11 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → (𝑥 = suc 𝑦 → ¬ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
5641, 55pm2.65d 186 . . . . . . . . . 10 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → ¬ 𝑥 = suc 𝑦)
5756nrexdv 2984 . . . . . . . . 9 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ¬ ∃𝑦 ∈ On 𝑥 = suc 𝑦)
5857pm2.21d 117 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (∃𝑦 ∈ On 𝑥 = suc 𝑦 → Lim 𝑥))
59 simpr 476 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → Lim 𝑥)
6059a1i 11 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((𝑥 ∈ V ∧ Lim 𝑥) → Lim 𝑥))
6122, 58, 603jaod 1384 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim 𝑥))
6212, 61mpd 15 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → Lim 𝑥)
639, 62jca 553 . . . . 5 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
6463ex 449 . . . 4 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ((𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)) → ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
6564eximdv 1833 . . 3 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (∃𝑥(𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
667, 65syl5bi 231 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
676, 66mpd 15 1 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3o 1030   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540  c0 3874   class class class wbr 4583  Oncon0 5640  Lim wlim 5641  suc csuc 5642  cfv 5804  ωcom 6957  csdm 7840  cardccrd 8644  cale 8645  cfccf 8646  Inaccwcwina 9383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-har 8346  df-card 8648  df-aleph 8649  df-cf 8650  df-wina 9385
This theorem is referenced by:  winafp  9398
  Copyright terms: Public domain W3C validator