Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwina Structured version   Visualization version   GIF version

Theorem elwina 9387
 Description: Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
elwina (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elwina
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐴 ∈ Inaccw𝐴 ∈ V)
2 fvex 6113 . . . 4 (cf‘𝐴) ∈ V
3 eleq1 2676 . . . 4 ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V))
42, 3mpbii 222 . . 3 ((cf‘𝐴) = 𝐴𝐴 ∈ V)
543ad2ant2 1076 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ∈ V)
6 neeq1 2844 . . . 4 (𝑧 = 𝐴 → (𝑧 ≠ ∅ ↔ 𝐴 ≠ ∅))
7 fveq2 6103 . . . . 5 (𝑧 = 𝐴 → (cf‘𝑧) = (cf‘𝐴))
8 eqeq12 2623 . . . . 5 (((cf‘𝑧) = (cf‘𝐴) ∧ 𝑧 = 𝐴) → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴))
97, 8mpancom 700 . . . 4 (𝑧 = 𝐴 → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴))
10 rexeq 3116 . . . . 5 (𝑧 = 𝐴 → (∃𝑦𝑧 𝑥𝑦 ↔ ∃𝑦𝐴 𝑥𝑦))
1110raleqbi1dv 3123 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝑧 𝑥𝑦 ↔ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
126, 9, 113anbi123d 1391 . . 3 (𝑧 = 𝐴 → ((𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥𝑧𝑦𝑧 𝑥𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
13 df-wina 9385 . . 3 Inaccw = {𝑧 ∣ (𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥𝑧𝑦𝑧 𝑥𝑦)}
1412, 13elab2g 3322 . 2 (𝐴 ∈ V → (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
151, 5, 14pm5.21nii 367 1 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  Vcvv 3173  ∅c0 3874   class class class wbr 4583  ‘cfv 5804   ≺ csdm 7840  cfccf 8646  Inaccwcwina 9383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-wina 9385 This theorem is referenced by:  winaon  9389  inawina  9391  winacard  9393  winainf  9395  winalim2  9397  winafp  9398  gchina  9400
 Copyright terms: Public domain W3C validator