MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winalim2 Unicode version

Theorem winalim2 8527
Description: A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winalim2  |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  ->  E. x ( ( aleph `  x )  =  A  /\  Lim  x ) )
Distinct variable group:    x, A

Proof of Theorem winalim2
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 winacard 8523 . . . 4  |-  ( A  e.  Inacc W  ->  ( card `  A )  =  A )
2 winainf 8525 . . . . 5  |-  ( A  e.  Inacc W  ->  om  C_  A
)
3 cardalephex 7927 . . . . 5  |-  ( om  C_  A  ->  ( (
card `  A )  =  A  <->  E. x  e.  On  A  =  ( aleph `  x ) ) )
42, 3syl 16 . . . 4  |-  ( A  e.  Inacc W  ->  (
( card `  A )  =  A  <->  E. x  e.  On  A  =  ( aleph `  x ) ) )
51, 4mpbid 202 . . 3  |-  ( A  e.  Inacc W  ->  E. x  e.  On  A  =  (
aleph `  x ) )
65adantr 452 . 2  |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  ->  E. x  e.  On  A  =  ( aleph `  x ) )
7 df-rex 2672 . . 3  |-  ( E. x  e.  On  A  =  ( aleph `  x
)  <->  E. x ( x  e.  On  /\  A  =  ( aleph `  x
) ) )
8 simprr 734 . . . . . . 7  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  A  =  ( aleph `  x
) )
98eqcomd 2409 . . . . . 6  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  ( aleph `  x )  =  A )
10 simprl 733 . . . . . . . 8  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  x  e.  On )
11 onzsl 4785 . . . . . . . 8  |-  ( x  e.  On  <->  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y  \/  ( x  e.  _V  /\  Lim  x
) ) )
1210, 11sylib 189 . . . . . . 7  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
x  =  (/)  \/  E. y  e.  On  x  =  suc  y  \/  (
x  e.  _V  /\  Lim  x ) ) )
13 simplr 732 . . . . . . . . . 10  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  A  =/=  om )
14 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( aleph `  x )  =  (
aleph `  (/) ) )
15 aleph0 7903 . . . . . . . . . . . . . 14  |-  ( aleph `  (/) )  =  om
1614, 15syl6eq 2452 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( aleph `  x )  =  om )
17 eqtr 2421 . . . . . . . . . . . . 13  |-  ( ( A  =  ( aleph `  x )  /\  ( aleph `  x )  =  om )  ->  A  =  om )
1816, 17sylan2 461 . . . . . . . . . . . 12  |-  ( ( A  =  ( aleph `  x )  /\  x  =  (/) )  ->  A  =  om )
1918ex 424 . . . . . . . . . . 11  |-  ( A  =  ( aleph `  x
)  ->  ( x  =  (/)  ->  A  =  om ) )
2019necon3ad 2603 . . . . . . . . . 10  |-  ( A  =  ( aleph `  x
)  ->  ( A  =/=  om  ->  -.  x  =  (/) ) )
218, 13, 20sylc 58 . . . . . . . . 9  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  -.  x  =  (/) )
2221pm2.21d 100 . . . . . . . 8  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
x  =  (/)  ->  Lim  x ) )
23 suceloni 4752 . . . . . . . . . . . . . . . 16  |-  ( y  e.  On  ->  suc  y  e.  On )
24 vex 2919 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
2524sucid 4620 . . . . . . . . . . . . . . . 16  |-  y  e. 
suc  y
26 alephord2i 7914 . . . . . . . . . . . . . . . 16  |-  ( suc  y  e.  On  ->  ( y  e.  suc  y  ->  ( aleph `  y )  e.  ( aleph `  suc  y ) ) )
2723, 25, 26ee10 1382 . . . . . . . . . . . . . . 15  |-  ( y  e.  On  ->  ( aleph `  y )  e.  ( aleph `  suc  y ) )
2827ad2antrl 709 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( aleph `  y
)  e.  ( aleph ` 
suc  y ) )
29 simplrr 738 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  A  =  (
aleph `  x ) )
30 fveq2 5687 . . . . . . . . . . . . . . . 16  |-  ( x  =  suc  y  -> 
( aleph `  x )  =  ( aleph `  suc  y ) )
3130ad2antll 710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( aleph `  x
)  =  ( aleph ` 
suc  y ) )
3229, 31eqtrd 2436 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  A  =  (
aleph `  suc  y ) )
3328, 32eleqtrrd 2481 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( aleph `  y
)  e.  A )
34 elwina 8517 . . . . . . . . . . . . . . 15  |-  ( A  e.  Inacc W  <->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. z  e.  A  E. w  e.  A  z  ~<  w
) )
3534simp3bi 974 . . . . . . . . . . . . . 14  |-  ( A  e.  Inacc W  ->  A. z  e.  A  E. w  e.  A  z  ~<  w )
3635ad3antrrr 711 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  A. z  e.  A  E. w  e.  A  z  ~<  w )
37 breq1 4175 . . . . . . . . . . . . . . 15  |-  ( z  =  ( aleph `  y
)  ->  ( z  ~<  w  <->  ( aleph `  y
)  ~<  w ) )
3837rexbidv 2687 . . . . . . . . . . . . . 14  |-  ( z  =  ( aleph `  y
)  ->  ( E. w  e.  A  z  ~<  w  <->  E. w  e.  A  ( aleph `  y )  ~<  w ) )
3938rspcva 3010 . . . . . . . . . . . . 13  |-  ( ( ( aleph `  y )  e.  A  /\  A. z  e.  A  E. w  e.  A  z  ~<  w )  ->  E. w  e.  A  ( aleph `  y )  ~<  w
)
4033, 36, 39syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  E. w  e.  A  ( aleph `  y )  ~<  w )
4140expr 599 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  y  e.  On )  ->  ( x  =  suc  y  ->  E. w  e.  A  ( aleph `  y )  ~<  w
) )
42 iscard 7818 . . . . . . . . . . . . . . . . . . 19  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. w  e.  A  w  ~<  A ) )
4342simprbi 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
card `  A )  =  A  ->  A. w  e.  A  w  ~<  A )
44 rsp 2726 . . . . . . . . . . . . . . . . . 18  |-  ( A. w  e.  A  w  ~<  A  ->  ( w  e.  A  ->  w  ~<  A ) )
451, 43, 443syl 19 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  Inacc W  ->  (
w  e.  A  ->  w  ~<  A ) )
4645ad3antrrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( w  e.  A  ->  w  ~<  A ) )
4732breq2d 4184 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( w  ~<  A  <-> 
w  ~<  ( aleph `  suc  y ) ) )
4846, 47sylibd 206 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( w  e.  A  ->  w  ~<  (
aleph `  suc  y ) ) )
49 alephnbtwn2 7909 . . . . . . . . . . . . . . . 16  |-  -.  (
( aleph `  y )  ~<  w  /\  w  ~<  (
aleph `  suc  y ) )
50 pm3.21 436 . . . . . . . . . . . . . . . 16  |-  ( w 
~<  ( aleph `  suc  y )  ->  ( ( aleph `  y )  ~<  w  ->  ( ( aleph `  y
)  ~<  w  /\  w  ~<  ( aleph `  suc  y ) ) ) )
5149, 50mtoi 171 . . . . . . . . . . . . . . 15  |-  ( w 
~<  ( aleph `  suc  y )  ->  -.  ( aleph `  y )  ~<  w
)
5248, 51syl6 31 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( w  e.  A  ->  -.  ( aleph `  y )  ~<  w ) )
5352imp 419 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  /\  w  e.  A
)  ->  -.  ( aleph `  y )  ~<  w )
5453nrexdv 2769 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  -.  E. w  e.  A  ( aleph `  y )  ~<  w
)
5554expr 599 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  y  e.  On )  ->  ( x  =  suc  y  ->  -.  E. w  e.  A  (
aleph `  y )  ~<  w ) )
5641, 55pm2.65d 168 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  y  e.  On )  ->  -.  x  =  suc  y )
5756nrexdv 2769 . . . . . . . . 9  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  -.  E. y  e.  On  x  =  suc  y )
5857pm2.21d 100 . . . . . . . 8  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  ( E. y  e.  On  x  =  suc  y  ->  Lim  x ) )
59 simpr 448 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  Lim  x )  ->  Lim  x )
6059a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
( x  e.  _V  /\ 
Lim  x )  ->  Lim  x ) )
6122, 58, 603jaod 1248 . . . . . . 7  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
( x  =  (/)  \/ 
E. y  e.  On  x  =  suc  y  \/  ( x  e.  _V  /\ 
Lim  x ) )  ->  Lim  x )
)
6212, 61mpd 15 . . . . . 6  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  Lim  x )
639, 62jca 519 . . . . 5  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
( aleph `  x )  =  A  /\  Lim  x
) )
6463ex 424 . . . 4  |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  -> 
( ( x  e.  On  /\  A  =  ( aleph `  x )
)  ->  ( ( aleph `  x )  =  A  /\  Lim  x
) ) )
6564eximdv 1629 . . 3  |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  -> 
( E. x ( x  e.  On  /\  A  =  ( aleph `  x ) )  ->  E. x ( ( aleph `  x )  =  A  /\  Lim  x ) ) )
667, 65syl5bi 209 . 2  |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  -> 
( E. x  e.  On  A  =  (
aleph `  x )  ->  E. x ( ( aleph `  x )  =  A  /\  Lim  x ) ) )
676, 66mpd 15 1  |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  ->  E. x ( ( aleph `  x )  =  A  /\  Lim  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   _Vcvv 2916    C_ wss 3280   (/)c0 3588   class class class wbr 4172   Oncon0 4541   Lim wlim 4542   suc csuc 4543   omcom 4804   ` cfv 5413    ~< csdm 7067   cardccrd 7778   alephcale 7779   cfccf 7780   Inacc Wcwina 8513
This theorem is referenced by:  winafp  8528
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-oi 7435  df-har 7482  df-card 7782  df-aleph 7783  df-cf 7784  df-wina 8515
  Copyright terms: Public domain W3C validator