MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winafp Structured version   Visualization version   GIF version

Theorem winafp 9398
Description: A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winafp ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴)

Proof of Theorem winafp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 winalim2 9397 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
2 vex 3176 . . . . . . . . 9 𝑥 ∈ V
3 limelon 5705 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
42, 3mpan 702 . . . . . . . 8 (Lim 𝑥𝑥 ∈ On)
5 alephle 8794 . . . . . . . 8 (𝑥 ∈ On → 𝑥 ⊆ (ℵ‘𝑥))
64, 5syl 17 . . . . . . 7 (Lim 𝑥𝑥 ⊆ (ℵ‘𝑥))
76ad2antll 761 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 ⊆ (ℵ‘𝑥))
8 simprl 790 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = 𝐴)
97, 8sseqtrd 3604 . . . . 5 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥𝐴)
108fveq2d 6107 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝐴))
11 alephsing 8981 . . . . . . . . 9 (Lim 𝑥 → (cf‘(ℵ‘𝑥)) = (cf‘𝑥))
1211ad2antll 761 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘(ℵ‘𝑥)) = (cf‘𝑥))
1310, 12eqtr3d 2646 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = (cf‘𝑥))
14 elwina 9387 . . . . . . . . 9 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑦𝐴𝑧𝐴 𝑦𝑧))
1514simp2bi 1070 . . . . . . . 8 (𝐴 ∈ Inaccw → (cf‘𝐴) = 𝐴)
1615ad2antrr 758 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝐴) = 𝐴)
1713, 16eqtr3d 2646 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (cf‘𝑥) = 𝐴)
18 cfle 8959 . . . . . 6 (cf‘𝑥) ⊆ 𝑥
1917, 18syl6eqssr 3619 . . . . 5 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝐴𝑥)
209, 19eqssd 3585 . . . 4 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → 𝑥 = 𝐴)
2120fveq2d 6107 . . 3 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝑥) = (ℵ‘𝐴))
2221, 8eqtr3d 2646 . 2 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) → (ℵ‘𝐴) = 𝐴)
231, 22exlimddv 1850 1 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540  c0 3874   class class class wbr 4583  Oncon0 5640  Lim wlim 5641  cfv 5804  ωcom 6957  csdm 7840  cale 8645  cfccf 8646  Inaccwcwina 9383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-smo 7330  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-har 8346  df-card 8648  df-aleph 8649  df-cf 8650  df-acn 8651  df-wina 9385
This theorem is referenced by:  winafpi  9399
  Copyright terms: Public domain W3C validator