MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso2 Structured version   Visualization version   GIF version

Theorem wemapso2 8341
Description: An alternative to having a well-order on 𝑅 in wemapso 8339 is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemapso2.u 𝑈 = {𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 𝑍}
Assertion
Ref Expression
wemapso2 ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑦,𝑧,𝑤)

Proof of Theorem wemapso2
StepHypRef Expression
1 wemapso.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
2 wemapso2.u . . . 4 𝑈 = {𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 𝑍}
31, 2wemapso2lem 8340 . . 3 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍 ∈ V) → 𝑇 Or 𝑈)
43expcom 450 . 2 (𝑍 ∈ V → ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈))
5 so0 4992 . . . 4 𝑇 Or ∅
6 relfsupp 8160 . . . . . . . . . 10 Rel finSupp
76brrelex2i 5083 . . . . . . . . 9 (𝑥 finSupp 𝑍𝑍 ∈ V)
87con3i 149 . . . . . . . 8 𝑍 ∈ V → ¬ 𝑥 finSupp 𝑍)
98ralrimivw 2950 . . . . . . 7 𝑍 ∈ V → ∀𝑥 ∈ (𝐵𝑚 𝐴) ¬ 𝑥 finSupp 𝑍)
10 rabeq0 3911 . . . . . . 7 ({𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅ ↔ ∀𝑥 ∈ (𝐵𝑚 𝐴) ¬ 𝑥 finSupp 𝑍)
119, 10sylibr 223 . . . . . 6 𝑍 ∈ V → {𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅)
122, 11syl5eq 2656 . . . . 5 𝑍 ∈ V → 𝑈 = ∅)
13 soeq2 4979 . . . . 5 (𝑈 = ∅ → (𝑇 Or 𝑈𝑇 Or ∅))
1412, 13syl 17 . . . 4 𝑍 ∈ V → (𝑇 Or 𝑈𝑇 Or ∅))
155, 14mpbiri 247 . . 3 𝑍 ∈ V → 𝑇 Or 𝑈)
1615a1d 25 . 2 𝑍 ∈ V → ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈))
174, 16pm2.61i 175 1 ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  c0 3874   class class class wbr 4583  {copab 4642   Or wor 4958  cfv 5804  (class class class)co 6549  𝑚 cmap 7744   finSupp cfsupp 8158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-fin 7845  df-fsupp 8159
This theorem is referenced by:  oemapso  8462
  Copyright terms: Public domain W3C validator