Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo Structured version   Visualization version   GIF version

Theorem uzwo 11627
 Description: Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by NM, 8-Oct-2005.)
Assertion
Ref Expression
uzwo ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗𝑆𝑘𝑆 𝑗𝑘)
Distinct variable group:   𝑗,𝑘,𝑆
Allowed substitution hints:   𝑀(𝑗,𝑘)

Proof of Theorem uzwo
Dummy variables 𝑡 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4586 . . . . . . . . . . . 12 ( = 𝑀 → (𝑡𝑀𝑡))
21ralbidv 2969 . . . . . . . . . . 11 ( = 𝑀 → (∀𝑡𝑆 𝑡 ↔ ∀𝑡𝑆 𝑀𝑡))
32imbi2d 329 . . . . . . . . . 10 ( = 𝑀 → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑡) ↔ ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑀𝑡)))
4 breq1 4586 . . . . . . . . . . . 12 ( = 𝑚 → (𝑡𝑚𝑡))
54ralbidv 2969 . . . . . . . . . . 11 ( = 𝑚 → (∀𝑡𝑆 𝑡 ↔ ∀𝑡𝑆 𝑚𝑡))
65imbi2d 329 . . . . . . . . . 10 ( = 𝑚 → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑡) ↔ ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑚𝑡)))
7 breq1 4586 . . . . . . . . . . . 12 ( = (𝑚 + 1) → (𝑡 ↔ (𝑚 + 1) ≤ 𝑡))
87ralbidv 2969 . . . . . . . . . . 11 ( = (𝑚 + 1) → (∀𝑡𝑆 𝑡 ↔ ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡))
98imbi2d 329 . . . . . . . . . 10 ( = (𝑚 + 1) → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑡) ↔ ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
10 breq1 4586 . . . . . . . . . . . 12 ( = 𝑛 → (𝑡𝑛𝑡))
1110ralbidv 2969 . . . . . . . . . . 11 ( = 𝑛 → (∀𝑡𝑆 𝑡 ↔ ∀𝑡𝑆 𝑛𝑡))
1211imbi2d 329 . . . . . . . . . 10 ( = 𝑛 → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑡) ↔ ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑛𝑡)))
13 ssel 3562 . . . . . . . . . . . . . 14 (𝑆 ⊆ (ℤ𝑀) → (𝑡𝑆𝑡 ∈ (ℤ𝑀)))
14 eluzle 11576 . . . . . . . . . . . . . 14 (𝑡 ∈ (ℤ𝑀) → 𝑀𝑡)
1513, 14syl6 34 . . . . . . . . . . . . 13 (𝑆 ⊆ (ℤ𝑀) → (𝑡𝑆𝑀𝑡))
1615ralrimiv 2948 . . . . . . . . . . . 12 (𝑆 ⊆ (ℤ𝑀) → ∀𝑡𝑆 𝑀𝑡)
1716adantr 480 . . . . . . . . . . 11 ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑀𝑡)
1817a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑀𝑡))
19 uzssz 11583 . . . . . . . . . . . . 13 (ℤ𝑀) ⊆ ℤ
20 sstr 3576 . . . . . . . . . . . . 13 ((𝑆 ⊆ (ℤ𝑀) ∧ (ℤ𝑀) ⊆ ℤ) → 𝑆 ⊆ ℤ)
2119, 20mpan2 703 . . . . . . . . . . . 12 (𝑆 ⊆ (ℤ𝑀) → 𝑆 ⊆ ℤ)
22 eluzelz 11573 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
23 breq1 4586 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑚 → (𝑗𝑡𝑚𝑡))
2423ralbidv 2969 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑚 → (∀𝑡𝑆 𝑗𝑡 ↔ ∀𝑡𝑆 𝑚𝑡))
2524rspcev 3282 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑆 ∧ ∀𝑡𝑆 𝑚𝑡) → ∃𝑗𝑆𝑡𝑆 𝑗𝑡)
2625expcom 450 . . . . . . . . . . . . . . . . 17 (∀𝑡𝑆 𝑚𝑡 → (𝑚𝑆 → ∃𝑗𝑆𝑡𝑆 𝑗𝑡))
2726con3rr3 150 . . . . . . . . . . . . . . . 16 (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡 → (∀𝑡𝑆 𝑚𝑡 → ¬ 𝑚𝑆))
28 ssel2 3563 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ⊆ ℤ ∧ 𝑡𝑆) → 𝑡 ∈ ℤ)
29 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
30 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 ∈ ℤ → 𝑡 ∈ ℝ)
31 letri3 10002 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑚 = 𝑡 ↔ (𝑚𝑡𝑡𝑚)))
3229, 30, 31syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑚 = 𝑡 ↔ (𝑚𝑡𝑡𝑚)))
33 zleltp1 11305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑡𝑚𝑡 < (𝑚 + 1)))
34 peano2re 10088 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
3529, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ ℤ → (𝑚 + 1) ∈ ℝ)
36 ltnle 9996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑡 ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ) → (𝑡 < (𝑚 + 1) ↔ ¬ (𝑚 + 1) ≤ 𝑡))
3730, 35, 36syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑡 < (𝑚 + 1) ↔ ¬ (𝑚 + 1) ≤ 𝑡))
3833, 37bitrd 267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑡𝑚 ↔ ¬ (𝑚 + 1) ≤ 𝑡))
3938ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑡𝑚 ↔ ¬ (𝑚 + 1) ≤ 𝑡))
4039anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ) → ((𝑚𝑡𝑡𝑚) ↔ (𝑚𝑡 ∧ ¬ (𝑚 + 1) ≤ 𝑡)))
4132, 40bitrd 267 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑚 = 𝑡 ↔ (𝑚𝑡 ∧ ¬ (𝑚 + 1) ≤ 𝑡)))
4228, 41sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (𝑚 = 𝑡 ↔ (𝑚𝑡 ∧ ¬ (𝑚 + 1) ≤ 𝑡)))
43 eleq1a 2683 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡𝑆 → (𝑚 = 𝑡𝑚𝑆))
4443ad2antll 761 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (𝑚 = 𝑡𝑚𝑆))
4542, 44sylbird 249 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → ((𝑚𝑡 ∧ ¬ (𝑚 + 1) ≤ 𝑡) → 𝑚𝑆))
4645expd 451 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (𝑚𝑡 → (¬ (𝑚 + 1) ≤ 𝑡𝑚𝑆)))
47 con1 142 . . . . . . . . . . . . . . . . . . . . . . 23 ((¬ (𝑚 + 1) ≤ 𝑡𝑚𝑆) → (¬ 𝑚𝑆 → (𝑚 + 1) ≤ 𝑡))
4846, 47syl6 34 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (𝑚𝑡 → (¬ 𝑚𝑆 → (𝑚 + 1) ≤ 𝑡)))
4948com23 84 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (¬ 𝑚𝑆 → (𝑚𝑡 → (𝑚 + 1) ≤ 𝑡)))
5049exp32 629 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℤ → (𝑆 ⊆ ℤ → (𝑡𝑆 → (¬ 𝑚𝑆 → (𝑚𝑡 → (𝑚 + 1) ≤ 𝑡)))))
5150com34 89 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℤ → (𝑆 ⊆ ℤ → (¬ 𝑚𝑆 → (𝑡𝑆 → (𝑚𝑡 → (𝑚 + 1) ≤ 𝑡)))))
5251imp41 617 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) ∧ ¬ 𝑚𝑆) ∧ 𝑡𝑆) → (𝑚𝑡 → (𝑚 + 1) ≤ 𝑡))
5352ralimdva 2945 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) ∧ ¬ 𝑚𝑆) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡))
5453ex 449 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) → (¬ 𝑚𝑆 → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
5527, 54sylan9r 688 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
5655pm2.43d 51 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡))
5756expl 646 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → ((𝑆 ⊆ ℤ ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
5822, 57syl 17 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ𝑀) → ((𝑆 ⊆ ℤ ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
5921, 58sylani 684 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑀) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
6059a2d 29 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑚𝑡) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
613, 6, 9, 12, 18, 60uzind4 11622 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑛𝑡))
62 breq1 4586 . . . . . . . . . . . . . 14 (𝑗 = 𝑛 → (𝑗𝑡𝑛𝑡))
6362ralbidv 2969 . . . . . . . . . . . . 13 (𝑗 = 𝑛 → (∀𝑡𝑆 𝑗𝑡 ↔ ∀𝑡𝑆 𝑛𝑡))
6463rspcev 3282 . . . . . . . . . . . 12 ((𝑛𝑆 ∧ ∀𝑡𝑆 𝑛𝑡) → ∃𝑗𝑆𝑡𝑆 𝑗𝑡)
6564expcom 450 . . . . . . . . . . 11 (∀𝑡𝑆 𝑛𝑡 → (𝑛𝑆 → ∃𝑗𝑆𝑡𝑆 𝑗𝑡))
6665con3rr3 150 . . . . . . . . . 10 (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡 → (∀𝑡𝑆 𝑛𝑡 → ¬ 𝑛𝑆))
6766adantl 481 . . . . . . . . 9 ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑛𝑡 → ¬ 𝑛𝑆))
6861, 67sylcom 30 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ¬ 𝑛𝑆))
69 ssel 3562 . . . . . . . . . 10 (𝑆 ⊆ (ℤ𝑀) → (𝑛𝑆𝑛 ∈ (ℤ𝑀)))
7069con3rr3 150 . . . . . . . . 9 𝑛 ∈ (ℤ𝑀) → (𝑆 ⊆ (ℤ𝑀) → ¬ 𝑛𝑆))
7170adantrd 483 . . . . . . . 8 𝑛 ∈ (ℤ𝑀) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ¬ 𝑛𝑆))
7268, 71pm2.61i 175 . . . . . . 7 ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ¬ 𝑛𝑆)
7372ex 449 . . . . . 6 (𝑆 ⊆ (ℤ𝑀) → (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡 → ¬ 𝑛𝑆))
7473alrimdv 1844 . . . . 5 (𝑆 ⊆ (ℤ𝑀) → (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡 → ∀𝑛 ¬ 𝑛𝑆))
75 eq0 3888 . . . . 5 (𝑆 = ∅ ↔ ∀𝑛 ¬ 𝑛𝑆)
7674, 75syl6ibr 241 . . . 4 (𝑆 ⊆ (ℤ𝑀) → (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡𝑆 = ∅))
7776necon1ad 2799 . . 3 (𝑆 ⊆ (ℤ𝑀) → (𝑆 ≠ ∅ → ∃𝑗𝑆𝑡𝑆 𝑗𝑡))
7877imp 444 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗𝑆𝑡𝑆 𝑗𝑡)
79 breq2 4587 . . . 4 (𝑡 = 𝑘 → (𝑗𝑡𝑗𝑘))
8079cbvralv 3147 . . 3 (∀𝑡𝑆 𝑗𝑡 ↔ ∀𝑘𝑆 𝑗𝑘)
8180rexbii 3023 . 2 (∃𝑗𝑆𝑡𝑆 𝑗𝑡 ↔ ∃𝑗𝑆𝑘𝑆 𝑗𝑘)
8278, 81sylib 207 1 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗𝑆𝑘𝑆 𝑗𝑘)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540  ∅c0 3874   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954  ℤcz 11254  ℤ≥cuz 11563 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564 This theorem is referenced by:  uzwo2  11628  nnwo  11629  infssuzle  11647  infssuzcl  11648  uzwo4  38246
 Copyright terms: Public domain W3C validator