MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo Structured version   Unicode version

Theorem uzwo 11222
Description: Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by NM, 8-Oct-2005.)
Assertion
Ref Expression
uzwo  |-  ( ( S  C_  ( ZZ>= `  M )  /\  S  =/=  (/) )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
Distinct variable group:    j, k, S
Allowed substitution hints:    M( j, k)

Proof of Theorem uzwo
Dummy variables  t  h  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4429 . . . . . . . . . . . 12  |-  ( h  =  M  ->  (
h  <_  t  <->  M  <_  t ) )
21ralbidv 2871 . . . . . . . . . . 11  |-  ( h  =  M  ->  ( A. t  e.  S  h  <_  t  <->  A. t  e.  S  M  <_  t ) )
32imbi2d 317 . . . . . . . . . 10  |-  ( h  =  M  ->  (
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  h  <_  t )  <->  ( ( S 
C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  M  <_  t ) ) )
4 breq1 4429 . . . . . . . . . . . 12  |-  ( h  =  m  ->  (
h  <_  t  <->  m  <_  t ) )
54ralbidv 2871 . . . . . . . . . . 11  |-  ( h  =  m  ->  ( A. t  e.  S  h  <_  t  <->  A. t  e.  S  m  <_  t ) )
65imbi2d 317 . . . . . . . . . 10  |-  ( h  =  m  ->  (
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  h  <_  t )  <->  ( ( S 
C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  m  <_  t ) ) )
7 breq1 4429 . . . . . . . . . . . 12  |-  ( h  =  ( m  + 
1 )  ->  (
h  <_  t  <->  ( m  +  1 )  <_ 
t ) )
87ralbidv 2871 . . . . . . . . . . 11  |-  ( h  =  ( m  + 
1 )  ->  ( A. t  e.  S  h  <_  t  <->  A. t  e.  S  ( m  +  1 )  <_ 
t ) )
98imbi2d 317 . . . . . . . . . 10  |-  ( h  =  ( m  + 
1 )  ->  (
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  h  <_  t )  <->  ( ( S 
C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
10 breq1 4429 . . . . . . . . . . . 12  |-  ( h  =  n  ->  (
h  <_  t  <->  n  <_  t ) )
1110ralbidv 2871 . . . . . . . . . . 11  |-  ( h  =  n  ->  ( A. t  e.  S  h  <_  t  <->  A. t  e.  S  n  <_  t ) )
1211imbi2d 317 . . . . . . . . . 10  |-  ( h  =  n  ->  (
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  h  <_  t )  <->  ( ( S 
C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  n  <_  t ) ) )
13 ssel 3464 . . . . . . . . . . . . . 14  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( t  e.  S  ->  t  e.  ( ZZ>= `  M )
) )
14 eluzle 11171 . . . . . . . . . . . . . 14  |-  ( t  e.  ( ZZ>= `  M
)  ->  M  <_  t )
1513, 14syl6 34 . . . . . . . . . . . . 13  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( t  e.  S  ->  M  <_ 
t ) )
1615ralrimiv 2844 . . . . . . . . . . . 12  |-  ( S 
C_  ( ZZ>= `  M
)  ->  A. t  e.  S  M  <_  t )
1716adantr 466 . . . . . . . . . . 11  |-  ( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  M  <_  t )
1817a1i 11 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( S  C_  ( ZZ>=
`  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  M  <_  t ) )
19 uzssz 11178 . . . . . . . . . . . . 13  |-  ( ZZ>= `  M )  C_  ZZ
20 sstr 3478 . . . . . . . . . . . . 13  |-  ( ( S  C_  ( ZZ>= `  M )  /\  ( ZZ>=
`  M )  C_  ZZ )  ->  S  C_  ZZ )
2119, 20mpan2 675 . . . . . . . . . . . 12  |-  ( S 
C_  ( ZZ>= `  M
)  ->  S  C_  ZZ )
22 eluzelz 11168 . . . . . . . . . . . . 13  |-  ( m  e.  ( ZZ>= `  M
)  ->  m  e.  ZZ )
23 breq1 4429 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  m  ->  (
j  <_  t  <->  m  <_  t ) )
2423ralbidv 2871 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  m  ->  ( A. t  e.  S  j  <_  t  <->  A. t  e.  S  m  <_  t ) )
2524rspcev 3188 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  S  /\  A. t  e.  S  m  <_  t )  ->  E. j  e.  S  A. t  e.  S  j  <_  t )
2625expcom 436 . . . . . . . . . . . . . . . . 17  |-  ( A. t  e.  S  m  <_  t  ->  ( m  e.  S  ->  E. j  e.  S  A. t  e.  S  j  <_  t ) )
2726con3rr3 141 . . . . . . . . . . . . . . . 16  |-  ( -. 
E. j  e.  S  A. t  e.  S  j  <_  t  ->  ( A. t  e.  S  m  <_  t  ->  -.  m  e.  S )
)
28 ssel2 3465 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( S  C_  ZZ  /\  t  e.  S )  ->  t  e.  ZZ )
29 zre 10941 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( m  e.  ZZ  ->  m  e.  RR )
30 zre 10941 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( t  e.  ZZ  ->  t  e.  RR )
31 letri3 9718 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( m  e.  RR  /\  t  e.  RR )  ->  ( m  =  t  <-> 
( m  <_  t  /\  t  <_  m ) ) )
3229, 30, 31syl2an 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( m  e.  ZZ  /\  t  e.  ZZ )  ->  ( m  =  t  <-> 
( m  <_  t  /\  t  <_  m ) ) )
33 zleltp1 10987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( t  e.  ZZ  /\  m  e.  ZZ )  ->  ( t  <_  m  <->  t  <  ( m  + 
1 ) ) )
34 peano2re 9805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( m  e.  RR  ->  (
m  +  1 )  e.  RR )
3529, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( m  e.  ZZ  ->  (
m  +  1 )  e.  RR )
36 ltnle 9712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( t  e.  RR  /\  ( m  +  1
)  e.  RR )  ->  ( t  < 
( m  +  1 )  <->  -.  ( m  +  1 )  <_ 
t ) )
3730, 35, 36syl2an 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( t  e.  ZZ  /\  m  e.  ZZ )  ->  ( t  <  (
m  +  1 )  <->  -.  ( m  +  1 )  <_  t )
)
3833, 37bitrd 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( t  e.  ZZ  /\  m  e.  ZZ )  ->  ( t  <_  m  <->  -.  ( m  +  1 )  <_  t )
)
3938ancoms 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( m  e.  ZZ  /\  t  e.  ZZ )  ->  ( t  <_  m  <->  -.  ( m  +  1 )  <_  t )
)
4039anbi2d 708 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( m  e.  ZZ  /\  t  e.  ZZ )  ->  ( ( m  <_ 
t  /\  t  <_  m )  <->  ( m  <_ 
t  /\  -.  (
m  +  1 )  <_  t ) ) )
4132, 40bitrd 256 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( m  e.  ZZ  /\  t  e.  ZZ )  ->  ( m  =  t  <-> 
( m  <_  t  /\  -.  ( m  + 
1 )  <_  t
) ) )
4228, 41sylan2 476 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( m  =  t  <->  ( m  <_ 
t  /\  -.  (
m  +  1 )  <_  t ) ) )
43 eleq1a 2512 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  e.  S  ->  (
m  =  t  ->  m  e.  S )
)
4443ad2antll 733 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( m  =  t  ->  m  e.  S ) )
4542, 44sylbird 238 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( (
m  <_  t  /\  -.  ( m  +  1 )  <_  t )  ->  m  e.  S ) )
4645expd 437 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( m  <_  t  ->  ( -.  ( m  +  1
)  <_  t  ->  m  e.  S ) ) )
47 con1 131 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( -.  ( m  + 
1 )  <_  t  ->  m  e.  S )  ->  ( -.  m  e.  S  ->  ( m  +  1 )  <_ 
t ) )
4846, 47syl6 34 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( m  <_  t  ->  ( -.  m  e.  S  ->  ( m  +  1 )  <_  t ) ) )
4948com23 81 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( -.  m  e.  S  ->  ( m  <_  t  ->  ( m  +  1 )  <_  t ) ) )
5049exp32 608 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ZZ  ->  ( S  C_  ZZ  ->  (
t  e.  S  -> 
( -.  m  e.  S  ->  ( m  <_  t  ->  ( m  +  1 )  <_ 
t ) ) ) ) )
5150com34 86 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ZZ  ->  ( S  C_  ZZ  ->  ( -.  m  e.  S  ->  ( t  e.  S  ->  ( m  <_  t  ->  ( m  +  1 )  <_  t )
) ) ) )
5251imp41 596 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( m  e.  ZZ  /\  S  C_  ZZ )  /\  -.  m  e.  S )  /\  t  e.  S )  ->  (
m  <_  t  ->  ( m  +  1 )  <_  t ) )
5352ralimdva 2840 . . . . . . . . . . . . . . . . 17  |-  ( ( ( m  e.  ZZ  /\  S  C_  ZZ )  /\  -.  m  e.  S
)  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) )
5453ex 435 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  ZZ  /\  S  C_  ZZ )  -> 
( -.  m  e.  S  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
5527, 54sylan9r 662 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  ZZ  /\  S  C_  ZZ )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  ( A. t  e.  S  m  <_  t  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
5655pm2.43d 50 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  S  C_  ZZ )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) )
5756expl 622 . . . . . . . . . . . . 13  |-  ( m  e.  ZZ  ->  (
( S  C_  ZZ  /\ 
-.  E. j  e.  S  A. t  e.  S  j  <_  t )  -> 
( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1
)  <_  t )
) )
5822, 57syl 17 . . . . . . . . . . . 12  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( ( S  C_  ZZ  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
5921, 58sylani 658 . . . . . . . . . . 11  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( ( S  C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
6059a2d 29 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( (
( S  C_  ( ZZ>=
`  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  m  <_  t )  -> 
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
613, 6, 9, 12, 18, 60uzind4 11217 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( S  C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  n  <_  t ) )
62 breq1 4429 . . . . . . . . . . . . . 14  |-  ( j  =  n  ->  (
j  <_  t  <->  n  <_  t ) )
6362ralbidv 2871 . . . . . . . . . . . . 13  |-  ( j  =  n  ->  ( A. t  e.  S  j  <_  t  <->  A. t  e.  S  n  <_  t ) )
6463rspcev 3188 . . . . . . . . . . . 12  |-  ( ( n  e.  S  /\  A. t  e.  S  n  <_  t )  ->  E. j  e.  S  A. t  e.  S  j  <_  t )
6564expcom 436 . . . . . . . . . . 11  |-  ( A. t  e.  S  n  <_  t  ->  ( n  e.  S  ->  E. j  e.  S  A. t  e.  S  j  <_  t ) )
6665con3rr3 141 . . . . . . . . . 10  |-  ( -. 
E. j  e.  S  A. t  e.  S  j  <_  t  ->  ( A. t  e.  S  n  <_  t  ->  -.  n  e.  S )
)
6766adantl 467 . . . . . . . . 9  |-  ( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  ( A. t  e.  S  n  <_  t  ->  -.  n  e.  S )
)
6861, 67sylcom 30 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( S  C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  -.  n  e.  S ) )
69 ssel 3464 . . . . . . . . . 10  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( n  e.  S  ->  n  e.  ( ZZ>= `  M )
) )
7069con3rr3 141 . . . . . . . . 9  |-  ( -.  n  e.  ( ZZ>= `  M )  ->  ( S  C_  ( ZZ>= `  M
)  ->  -.  n  e.  S ) )
7170adantrd 469 . . . . . . . 8  |-  ( -.  n  e.  ( ZZ>= `  M )  ->  (
( S  C_  ( ZZ>=
`  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  -.  n  e.  S
) )
7268, 71pm2.61i 167 . . . . . . 7  |-  ( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  -.  n  e.  S )
7372ex 435 . . . . . 6  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( -.  E. j  e.  S  A. t  e.  S  j  <_  t  ->  -.  n  e.  S ) )
7473alrimdv 1768 . . . . 5  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( -.  E. j  e.  S  A. t  e.  S  j  <_  t  ->  A. n  -.  n  e.  S
) )
75 eq0 3783 . . . . 5  |-  ( S  =  (/)  <->  A. n  -.  n  e.  S )
7674, 75syl6ibr 230 . . . 4  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( -.  E. j  e.  S  A. t  e.  S  j  <_  t  ->  S  =  (/) ) )
7776necon1ad 2647 . . 3  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( S  =/=  (/)  ->  E. j  e.  S  A. t  e.  S  j  <_  t ) )
7877imp 430 . 2  |-  ( ( S  C_  ( ZZ>= `  M )  /\  S  =/=  (/) )  ->  E. j  e.  S  A. t  e.  S  j  <_  t )
79 breq2 4430 . . . 4  |-  ( t  =  k  ->  (
j  <_  t  <->  j  <_  k ) )
8079cbvralv 3062 . . 3  |-  ( A. t  e.  S  j  <_  t  <->  A. k  e.  S  j  <_  k )
8180rexbii 2934 . 2  |-  ( E. j  e.  S  A. t  e.  S  j  <_  t  <->  E. j  e.  S  A. k  e.  S  j  <_  k )
8278, 81sylib 199 1  |-  ( ( S  C_  ( ZZ>= `  M )  /\  S  =/=  (/) )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370   A.wal 1435    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   E.wrex 2783    C_ wss 3442   (/)c0 3767   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   RRcr 9537   1c1 9539    + caddc 9541    < clt 9674    <_ cle 9675   ZZcz 10937   ZZ>=cuz 11159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-n0 10870  df-z 10938  df-uz 11160
This theorem is referenced by:  uzwo2  11223  nnwo  11224  infssuzle  11244  infssuzcl  11245  infmssuzleOLD  11246  infmssuzclOLD  11247  uzwo4  37033
  Copyright terms: Public domain W3C validator