Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgredg2v Structured version   Visualization version   GIF version

Theorem usgredg2v 40454
 Description: In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg2v.v 𝑉 = (Vtx‘𝐺)
usgredg2v.e 𝐸 = (iEdg‘𝐺)
usgredg2v.a 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
usgredg2v.f 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}))
Assertion
Ref Expression
usgredg2v ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Distinct variable groups:   𝑥,𝐸,𝑧   𝑧,𝐺   𝑥,𝑁,𝑧   𝑧,𝑉   𝑦,𝐴   𝑦,𝐸,𝑥,𝑧   𝑦,𝐺   𝑦,𝑁   𝑦,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥)   𝑉(𝑥)

Proof of Theorem usgredg2v
Dummy variables 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgredg2v.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 usgredg2v.e . . . . 5 𝐸 = (iEdg‘𝐺)
3 usgredg2v.a . . . . 5 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
41, 2, 3usgredg2vlem1 40452 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑦𝐴) → (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉)
54ralrimiva 2949 . . 3 (𝐺 ∈ USGraph → ∀𝑦𝐴 (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉)
65adantr 480 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ∀𝑦𝐴 (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉)
72usgrf1 40402 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐸:dom 𝐸1-1→ran 𝐸)
87adantr 480 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐸:dom 𝐸1-1→ran 𝐸)
9 elrabi 3328 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} → 𝑦 ∈ dom 𝐸)
109, 3eleq2s 2706 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ dom 𝐸)
11 elrabi 3328 . . . . . . . . . 10 (𝑤 ∈ {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)} → 𝑤 ∈ dom 𝐸)
1211, 3eleq2s 2706 . . . . . . . . 9 (𝑤𝐴𝑤 ∈ dom 𝐸)
1310, 12anim12i 588 . . . . . . . 8 ((𝑦𝐴𝑤𝐴) → (𝑦 ∈ dom 𝐸𝑤 ∈ dom 𝐸))
14 f1fveq 6420 . . . . . . . 8 ((𝐸:dom 𝐸1-1→ran 𝐸 ∧ (𝑦 ∈ dom 𝐸𝑤 ∈ dom 𝐸)) → ((𝐸𝑦) = (𝐸𝑤) ↔ 𝑦 = 𝑤))
158, 13, 14syl2an 493 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → ((𝐸𝑦) = (𝐸𝑤) ↔ 𝑦 = 𝑤))
1615bicomd 212 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝑦 = 𝑤 ↔ (𝐸𝑦) = (𝐸𝑤)))
1716notbid 307 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ 𝑦 = 𝑤 ↔ ¬ (𝐸𝑦) = (𝐸𝑤)))
18 simpl 472 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐺 ∈ USGraph )
19 simpl 472 . . . . . . . . . 10 ((𝑦𝐴𝑤𝐴) → 𝑦𝐴)
2018, 19anim12i 588 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐺 ∈ USGraph ∧ 𝑦𝐴))
21 preq1 4212 . . . . . . . . . . 11 (𝑢 = 𝑧 → {𝑢, 𝑁} = {𝑧, 𝑁})
2221eqeq2d 2620 . . . . . . . . . 10 (𝑢 = 𝑧 → ((𝐸𝑦) = {𝑢, 𝑁} ↔ (𝐸𝑦) = {𝑧, 𝑁}))
2322cbvriotav 6522 . . . . . . . . 9 (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁})
241, 2, 3usgredg2vlem2 40453 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑦𝐴) → ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) → (𝐸𝑦) = {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁}))
2520, 23, 24mpisyl 21 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐸𝑦) = {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁})
26 simpr 476 . . . . . . . . . 10 ((𝑦𝐴𝑤𝐴) → 𝑤𝐴)
2718, 26anim12i 588 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐺 ∈ USGraph ∧ 𝑤𝐴))
2821eqeq2d 2620 . . . . . . . . . 10 (𝑢 = 𝑧 → ((𝐸𝑤) = {𝑢, 𝑁} ↔ (𝐸𝑤) = {𝑧, 𝑁}))
2928cbvriotav 6522 . . . . . . . . 9 (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})
301, 2, 3usgredg2vlem2 40453 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑤𝐴) → ((𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → (𝐸𝑤) = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁}))
3127, 29, 30mpisyl 21 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (𝐸𝑤) = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁})
3225, 31eqeq12d 2625 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → ((𝐸𝑦) = (𝐸𝑤) ↔ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁}))
3332notbid 307 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ (𝐸𝑦) = (𝐸𝑤) ↔ ¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁}))
34 riotaex 6515 . . . . . . . . . . . 12 (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) ∈ V
3534a1i 11 . . . . . . . . . . 11 (𝑁𝑉 → (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) ∈ V)
36 id 22 . . . . . . . . . . 11 (𝑁𝑉𝑁𝑉)
37 riotaex 6515 . . . . . . . . . . . 12 (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∈ V
3837a1i 11 . . . . . . . . . . 11 (𝑁𝑉 → (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∈ V)
39 preq12bg 4326 . . . . . . . . . . 11 ((((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) ∈ V ∧ 𝑁𝑉) ∧ ((𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∈ V ∧ 𝑁𝑉)) → ({(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
4035, 36, 38, 36, 39syl22anc 1319 . . . . . . . . . 10 (𝑁𝑉 → ({(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
4140notbid 307 . . . . . . . . 9 (𝑁𝑉 → (¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ ¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
4241adantl 481 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} ↔ ¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁})))))
43 ioran 510 . . . . . . . . . . 11 (¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) ↔ (¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∧ ¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))))
44 ianor 508 . . . . . . . . . . . . 13 (¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ↔ (¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∨ ¬ 𝑁 = 𝑁))
4523, 29eqeq12i 2624 . . . . . . . . . . . . . . . . 17 ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ↔ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
4645notbii 309 . . . . . . . . . . . . . . . 16 (¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ↔ ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
4746biimpi 205 . . . . . . . . . . . . . . 15 (¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
4847a1d 25 . . . . . . . . . . . . . 14 (¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
49 eqid 2610 . . . . . . . . . . . . . . 15 𝑁 = 𝑁
5049pm2.24i 145 . . . . . . . . . . . . . 14 𝑁 = 𝑁 → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5148, 50jaoi 393 . . . . . . . . . . . . 13 ((¬ (𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∨ ¬ 𝑁 = 𝑁) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5244, 51sylbi 206 . . . . . . . . . . . 12 (¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5352adantr 480 . . . . . . . . . . 11 ((¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∧ ¬ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5443, 53sylbi 206 . . . . . . . . . 10 (¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) → (𝐺 ∈ USGraph → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5554com12 32 . . . . . . . . 9 (𝐺 ∈ USGraph → (¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5655adantr 480 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (¬ (((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}) ∧ 𝑁 = 𝑁) ∨ ((𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}) = 𝑁𝑁 = (𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}))) → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5742, 56sylbid 229 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5857adantr 480 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ {(𝑢𝑉 (𝐸𝑦) = {𝑢, 𝑁}), 𝑁} = {(𝑢𝑉 (𝐸𝑤) = {𝑢, 𝑁}), 𝑁} → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
5933, 58sylbid 229 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ (𝐸𝑦) = (𝐸𝑤) → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
6017, 59sylbid 229 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → (¬ 𝑦 = 𝑤 → ¬ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁})))
6160con4d 113 . . 3 (((𝐺 ∈ USGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑤𝐴)) → ((𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤))
6261ralrimivva 2954 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ∀𝑦𝐴𝑤𝐴 ((𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤))
63 usgredg2v.f . . 3 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}))
64 fveq2 6103 . . . . 5 (𝑦 = 𝑤 → (𝐸𝑦) = (𝐸𝑤))
6564eqeq1d 2612 . . . 4 (𝑦 = 𝑤 → ((𝐸𝑦) = {𝑧, 𝑁} ↔ (𝐸𝑤) = {𝑧, 𝑁}))
6665riotabidv 6513 . . 3 (𝑦 = 𝑤 → (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}))
6763, 66f1mpt 6419 . 2 (𝐹:𝐴1-1𝑉 ↔ (∀𝑦𝐴 (𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) ∈ 𝑉 ∧ ∀𝑦𝐴𝑤𝐴 ((𝑧𝑉 (𝐸𝑦) = {𝑧, 𝑁}) = (𝑧𝑉 (𝐸𝑤) = {𝑧, 𝑁}) → 𝑦 = 𝑤)))
686, 62, 67sylanbrc 695 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  Vcvv 3173  {cpr 4127   ↦ cmpt 4643  dom cdm 5038  ran crn 5039  –1-1→wf1 5801  ‘cfv 5804  ℩crio 6510  Vtxcvtx 25673  iEdgciedg 25674   USGraph cusgr 40379 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-umgr 25750  df-edga 25793  df-usgr 40381 This theorem is referenced by:  usgredgleord  40455
 Copyright terms: Public domain W3C validator