Proof of Theorem usgredg2vlem2
Step | Hyp | Ref
| Expression |
1 | | fveq2 6103 |
. . . . . 6
⊢ (𝑥 = 𝑌 → (𝐸‘𝑥) = (𝐸‘𝑌)) |
2 | 1 | eleq2d 2673 |
. . . . 5
⊢ (𝑥 = 𝑌 → (𝑁 ∈ (𝐸‘𝑥) ↔ 𝑁 ∈ (𝐸‘𝑌))) |
3 | | usgredg2v.a |
. . . . 5
⊢ 𝐴 = {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} |
4 | 2, 3 | elrab2 3333 |
. . . 4
⊢ (𝑌 ∈ 𝐴 ↔ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌))) |
5 | 4 | biimpi 205 |
. . 3
⊢ (𝑌 ∈ 𝐴 → (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌))) |
6 | | usgredg2v.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
7 | | usgredg2v.e |
. . . . . . . 8
⊢ 𝐸 = (iEdg‘𝐺) |
8 | 6, 7 | usgredgreu 40445 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)) → ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑁, 𝑧}) |
9 | 8 | 3expb 1258 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌))) → ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑁, 𝑧}) |
10 | 6, 7, 3 | usgredg2vlem1 40452 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉) |
11 | 10 | adantlr 747 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌))) ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉) |
12 | 11 | ad4ant23 1289 |
. . . . . . . . . . . . 13
⊢
((((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) ∧ 𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁})) → (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉) |
13 | | eleq1 2676 |
. . . . . . . . . . . . . 14
⊢ (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐼 ∈ 𝑉 ↔ (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉)) |
14 | 13 | adantl 481 |
. . . . . . . . . . . . 13
⊢
((((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) ∧ 𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁})) → (𝐼 ∈ 𝑉 ↔ (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉)) |
15 | 12, 14 | mpbird 246 |
. . . . . . . . . . . 12
⊢
((((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) ∧ 𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁})) → 𝐼 ∈ 𝑉) |
16 | | prcom 4211 |
. . . . . . . . . . . . . . . 16
⊢ {𝑁, 𝑧} = {𝑧, 𝑁} |
17 | 16 | eqeq2i 2622 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸‘𝑌) = {𝑁, 𝑧} ↔ (𝐸‘𝑌) = {𝑧, 𝑁}) |
18 | 17 | reubii 3105 |
. . . . . . . . . . . . . 14
⊢
(∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ↔ ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) |
19 | 18 | biimpi 205 |
. . . . . . . . . . . . 13
⊢
(∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} → ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) |
20 | 19 | ad3antrrr 762 |
. . . . . . . . . . . 12
⊢
((((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) ∧ 𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁})) → ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) |
21 | | preq1 4212 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝐼 → {𝑧, 𝑁} = {𝐼, 𝑁}) |
22 | 21 | eqeq2d 2620 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝐼 → ((𝐸‘𝑌) = {𝑧, 𝑁} ↔ (𝐸‘𝑌) = {𝐼, 𝑁})) |
23 | 22 | riota2 6533 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → ((𝐸‘𝑌) = {𝐼, 𝑁} ↔ (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) = 𝐼)) |
24 | 15, 20, 23 | syl2anc 691 |
. . . . . . . . . . 11
⊢
((((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) ∧ 𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁})) → ((𝐸‘𝑌) = {𝐼, 𝑁} ↔ (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) = 𝐼)) |
25 | 24 | exbiri 650 |
. . . . . . . . . 10
⊢
(((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → ((℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) = 𝐼 → (𝐸‘𝑌) = {𝐼, 𝑁}))) |
26 | 25 | com13 86 |
. . . . . . . . 9
⊢
((℩𝑧
∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) = 𝐼 → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (((∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) → (𝐸‘𝑌) = {𝐼, 𝑁}))) |
27 | 26 | eqcoms 2618 |
. . . . . . . 8
⊢ (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (((∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) → (𝐸‘𝑌) = {𝐼, 𝑁}))) |
28 | 27 | pm2.43i 50 |
. . . . . . 7
⊢ (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (((∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) → (𝐸‘𝑌) = {𝐼, 𝑁})) |
29 | 28 | expdcom 454 |
. . . . . 6
⊢
((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) → (𝑌 ∈ 𝐴 → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐸‘𝑌) = {𝐼, 𝑁}))) |
30 | 9, 29 | mpancom 700 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌))) → (𝑌 ∈ 𝐴 → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐸‘𝑌) = {𝐼, 𝑁}))) |
31 | 30 | expcom 450 |
. . . 4
⊢ ((𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)) → (𝐺 ∈ USGraph → (𝑌 ∈ 𝐴 → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐸‘𝑌) = {𝐼, 𝑁})))) |
32 | 31 | com23 84 |
. . 3
⊢ ((𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)) → (𝑌 ∈ 𝐴 → (𝐺 ∈ USGraph → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐸‘𝑌) = {𝐼, 𝑁})))) |
33 | 5, 32 | mpcom 37 |
. 2
⊢ (𝑌 ∈ 𝐴 → (𝐺 ∈ USGraph → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐸‘𝑌) = {𝐼, 𝑁}))) |
34 | 33 | impcom 445 |
1
⊢ ((𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴) → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐸‘𝑌) = {𝐼, 𝑁})) |