Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgredg2vlem2 Structured version   Visualization version   GIF version

Theorem usgredg2vlem2 40453
 Description: Lemma 2 for usgredg2v 40454. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg2v.v 𝑉 = (Vtx‘𝐺)
usgredg2v.e 𝐸 = (iEdg‘𝐺)
usgredg2v.a 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
Assertion
Ref Expression
usgredg2vlem2 ((𝐺 ∈ USGraph ∧ 𝑌𝐴) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))
Distinct variable groups:   𝑥,𝐸,𝑧   𝑧,𝐺   𝑥,𝑁,𝑧   𝑧,𝑉   𝑥,𝑌,𝑧   𝑧,𝐼
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐺(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem usgredg2vlem2
StepHypRef Expression
1 fveq2 6103 . . . . . 6 (𝑥 = 𝑌 → (𝐸𝑥) = (𝐸𝑌))
21eleq2d 2673 . . . . 5 (𝑥 = 𝑌 → (𝑁 ∈ (𝐸𝑥) ↔ 𝑁 ∈ (𝐸𝑌)))
3 usgredg2v.a . . . . 5 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
42, 3elrab2 3333 . . . 4 (𝑌𝐴 ↔ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))
54biimpi 205 . . 3 (𝑌𝐴 → (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))
6 usgredg2v.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
7 usgredg2v.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
86, 7usgredgreu 40445 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)) → ∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧})
983expb 1258 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌))) → ∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧})
106, 7, 3usgredg2vlem1 40452 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ 𝑌𝐴) → (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉)
1110adantlr 747 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌))) ∧ 𝑌𝐴) → (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉)
1211ad4ant23 1289 . . . . . . . . . . . . 13 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉)
13 eleq1 2676 . . . . . . . . . . . . . 14 (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐼𝑉 ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉))
1413adantl 481 . . . . . . . . . . . . 13 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → (𝐼𝑉 ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉))
1512, 14mpbird 246 . . . . . . . . . . . 12 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → 𝐼𝑉)
16 prcom 4211 . . . . . . . . . . . . . . . 16 {𝑁, 𝑧} = {𝑧, 𝑁}
1716eqeq2i 2622 . . . . . . . . . . . . . . 15 ((𝐸𝑌) = {𝑁, 𝑧} ↔ (𝐸𝑌) = {𝑧, 𝑁})
1817reubii 3105 . . . . . . . . . . . . . 14 (∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ↔ ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})
1918biimpi 205 . . . . . . . . . . . . 13 (∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} → ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})
2019ad3antrrr 762 . . . . . . . . . . . 12 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})
21 preq1 4212 . . . . . . . . . . . . . 14 (𝑧 = 𝐼 → {𝑧, 𝑁} = {𝐼, 𝑁})
2221eqeq2d 2620 . . . . . . . . . . . . 13 (𝑧 = 𝐼 → ((𝐸𝑌) = {𝑧, 𝑁} ↔ (𝐸𝑌) = {𝐼, 𝑁}))
2322riota2 6533 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → ((𝐸𝑌) = {𝐼, 𝑁} ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼))
2415, 20, 23syl2anc 691 . . . . . . . . . . 11 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → ((𝐸𝑌) = {𝐼, 𝑁} ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼))
2524exbiri 650 . . . . . . . . . 10 (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → ((𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼 → (𝐸𝑌) = {𝐼, 𝑁})))
2625com13 86 . . . . . . . . 9 ((𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐸𝑌) = {𝐼, 𝑁})))
2726eqcoms 2618 . . . . . . . 8 (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐸𝑌) = {𝐼, 𝑁})))
2827pm2.43i 50 . . . . . . 7 (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐸𝑌) = {𝐼, 𝑁}))
2928expdcom 454 . . . . . 6 ((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) → (𝑌𝐴 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁})))
309, 29mpancom 700 . . . . 5 ((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌))) → (𝑌𝐴 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁})))
3130expcom 450 . . . 4 ((𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)) → (𝐺 ∈ USGraph → (𝑌𝐴 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))))
3231com23 84 . . 3 ((𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)) → (𝑌𝐴 → (𝐺 ∈ USGraph → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))))
335, 32mpcom 37 . 2 (𝑌𝐴 → (𝐺 ∈ USGraph → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁})))
3433impcom 445 1 ((𝐺 ∈ USGraph ∧ 𝑌𝐴) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃!wreu 2898  {crab 2900  {cpr 4127  dom cdm 5038  ‘cfv 5804  ℩crio 6510  Vtxcvtx 25673  iEdgciedg 25674   USGraph cusgr 40379 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-umgr 25750  df-edga 25793  df-usgr 40381 This theorem is referenced by:  usgredg2v  40454
 Copyright terms: Public domain W3C validator